
Building Distributed
Applications using JAVA - RMI

by,
Venkat

Intelligroup Inc.

(847) 292 - 8263
venkat@inforel.com

■ Advent of the Internet and
WWW

■ Electronic commerce
■ Distributed computing
■ Component based architectures
■ Off the shelf business objects
■ Intelligent Agents
■ Smart cards and other embedded

devices

Introduction

With the increasing growth and popularity of
the Internet and networking technologies, there
is an increasing demand for simple and
powerful distributed applications that can be
designed and maintained with a minimum of
effort. There are several new distributed
application technologies that are on the rise.

Building
Distributed Applications

■ Sockets
■ RPC (Remote Procedure Call)
■ CORBA
■ DCOM

• JAVA-RMI (Remote
Method Invocation)

What Do
Distributed Applications Do ?

Distributed object applications need to:

■ Locate remote objects
■ Communicate with remote objects
■ Load the code for objects that are passed around

What is
Remote Method Invocation ?

It is the action of invoking a method of a
remote interface on a remote object

The method invocation on a remote object
has the same syntax as the method
invocation on a local object

Java: a definition
■ What is Java ?
Java is a simple,
object-oriented,
distributed, interpreted,
robust, secure,
architecture- neutral,
portable, high-performance,
multithreaded and dynamic
language.

Lets Dispel Some Java Myths

■ Java is like C and C++
■ Java is slow
■ Java is only good for

creating cool graphics on
the web

■ Java is easy to learn
Now On To Some Java
Realities …

The Java Platform

A platform is the hardware or software environment
in which a program runs. The Java platform differs
from most other platforms in that it's a software-only
platform that runs on top of other, hardware-based
platforms. Most other platforms are described as a
combination of hardware and operating system

■ The Java Virtual Machine (Java VM)
■ The Java Application Programming

Interface (Java API)

Java Applications and Applets

■ Applications are stand alone java programs,
that execute independently of a browser

■ Applets are similar to applications, but they
don't run standalone. Instead, applets adhere
to a set of conventions that lets them run
within a Java-compatible browser

Java - RMI

The Java Remote Method Invocation (RMI)
system allows an object running in one Java
Virtual Machine (VM) to invoke methods in
an object running in another Java VM.

RMI provides for remote communication
between programs written in the Java
programming language

WHY CHOOSE JAVA-RMI ?
■ The JAVA-RMI model is simple

and easy to use
■ Seamless Remote Invocation on

objects in different virtual machines
■ Very reliable distributed

applications
■ Preserves the safety and security

provided by the Java runtime
■ Callbacks from servers to applets

Overview Of RMI Architecture

The RMI system consists of three layers:
■ The stub/skeleton layer

client-side stubs and server-side skeletons
■ The remote reference layer

remote reference behavior (invocation to a single
or replicated objects)

■ The transport layer
set up a connection, management, and remote
object tracking

Overview Of RMI Architecture

■ Transparent transmission of objects from one
address space to another by object serialization
(java language specific)

■ A client invoking a method on a remote object
actually makes use of a stub or proxy for the
remote object, as a conduit to the remote object

■ The remote reference layer is responsible for
carrying out the semantics of the invocation

Java-RMI Architecture

CLIENT SERVERApplication

Stubs Skeletons

Remote Reference Layer

Transport

RMI System

Stubs (Client-Side Proxies)
■ Initiate a call to the remote object (by calling the

remote reference layer)
■ Marshal arguments to a marshal stream

(obtained from the remote reference layer)
■ Inform the remote reference layer that the call

should be invoked
■ Unmarshal the return value or exception from a

marshal stream
■ Inform the remote reference layer that the call is

complete

Skeletons

■ Unmarshal arguments from the marshal stream
■ Make the up-call to the actual remote object

implementation.
■ Marshal the return value of the call or an

exception (if one occurred) onto the marshal
stream

The Remote Reference Layer

■ Responsible for carrying out specific remote reference
protocol independent of stubs and skeletons

■ Examples of various invocation protocols that can be
carried out at this layer:
– Unicast point-to-point invocation
– Invocation to replicated object groups
– Support for persistence reference to remote objects
– Replication and reconnection strategies

■ Data transmission to the transport layer via abstraction
of a stream-oriented connection

The Transport Layer
The transport layer responsibilities:
■ Setting up connections to remote address spaces
■ Managing connections
■ Monitoring connection liveness
■ Listening for incoming calls
■ Maintaing a table of remote objects that reside in

the address space
■ Setting up a connection for an incoming call
■ Locate the dispatcher for the target of the remote

call and pass the connection to the dispatcher

Transport Layer Abstractions

■ Endpoint: Endpoint is the abstraction used to
denote an address space or a JVM. In the
implementation, an endpoint can be mapped to its
transport. Given an endpoint, a specific transport
instance can be obtained

■ Channel: Abstraction for a conduit between two
address spaces. It is responsible for managing
connections between the local address space and
the remote address space for which it is a channel

■ Connection: It is an abstraction for transferring
data (performing input/output)

Transport Layer Abstractions

■ Transport: This abstraction manages channels.
Within a transport only one channel exists per pair
of address spaces. Given an endpoint to a remote
address space, a transport sets up a channel to that
address space. The transport abstraction is
responsible for accepting calls on incoming
connections to the address space, setting up a
connection object for the call, and dispatching to
higher layers in the stream

Thread Usage in RMI

■ A method dispatched by RMI runtime to a remote
object may or may not execute in a separate thread

■ Some calls originating from the same client VM
will execute in the same thread and others in
different threads

■ Calls originating from different client VM’s will
execute in different threads

■ The RMI runtime makes no guarantees with
respect to mapping remote object invocations to
threads (other than the different client VM’s)

Java Distributed Object Model

■ Remote Object
an object whose methods can be invoked
from another Java VM

■ Remote Interfaces
Java interfaces that declare the methods of
the remote object

Similarities of Distributed and
Normal Java Object Models
■ A remote object reference can be passed as an

argument or returned as a result in any method
invocation (local or remote)

■ A remote object can be cast to any remote
interface supported by the implementation

■ The Java instanceof operator can be used to test
the remote interfaces supported by a remote object

Differences Between Distributed
And Normal Java Object Models
■ Clients interact only with remote interfaces and

not with the implementation classes of the remote
objects

■ A non-remote argument is passed by copy and not
by reference. A remote object is passed by
reference

■ Clients have to deal with additional exceptions and
failure modes when invoking methods on objects
remotely

Advantages of Dynamic Code
Loading
■ A central and unique feature of RMI is its ability to

download the bytecodes of an object's class if the class is
not defined in the receiver's virtual machine

■ The types and the behavior of an object, previously
available only in a single virtual machine, can be
transmitted to another, possibly remote, virtual machine

■ RMI passes objects by their true type, so the behavior of
those objects is not changed when they are sent to another
virtual machine

■ Allows new types to be introduced into a remote virtual
machine, thus extending the behavior of an application
dynamically

RMI Interface And Classes

Remote RemoteObject

RemoteServer

UnicastRemoteObject

IOException

RemoteException

Interfaces Classes

The RemoteObject and
RemoteServer Classes

■ The java.rmi.server.RemoteObject class
provides the remote semantics of Object by
implementing methods for hashCode, equals,
and toString

■ The java.rmi.server.RemoteServer class,
which is abstract, provides the methods
needed to create objects and export them
(make them available remotely)

The UnicastRemoteObject Class

■ The java.rmi.server.UnicastRemoteObject
class defines a singleton (unicast) remote
object whose references are valid only while
the server process is alive

■ The UnicastRemoteObject class provides
support for point-to-point active object
references (invocations, parameters, and
results) using TCP streams

Locating Remote Objects

■ A simple bootstrap name server for storing
named references to remote objects

■ A remote object reference is stored using
URL based methods

■ Client first obtains a reference to a remote
object before invoking any remote methods

■ A reference to a remote object is usually
obtained as a return value to a method call

Building And Running A
Distributed Application

■ Define the interfaces to the remote objects
■ Design and Implement the remote objects and

compile the classes
■ Run rmic on the compiled classes to create

stubs and skeletons
■ Make classes network accessible
■ Start the remote registry
■ Start the server … clients can invoke remote

methods now !!

Applets Vs. Applications

■ A remote server object can extend
UnicastRemoteObject and call super() in its
constructor to export itself as a remote object.
This is typically how an application is used

■ Subclass of Applet cannot extend from
another class. It can invoke the static method
exportObject() available in
UnicastRemoteObject and pass a reference to
itself as a parameter to that method

RMI Through Firewalls Via
Proxies
■ RMI transport normally opens direct socket

connections to hosts on the internet
■ Two alternate HTTP based mechanisms
■ Enables clients behind a firewall to invoke

methods on remote objects that reside outside
■ RMI call embedded inside firewall trusted HTTP
■ RMI call data sent as body of HTTP POST request
■ Return information sent back as HTTP response
■ Performance issues and limitations associated with

proxies

RMI in JDK 1.2

■ Custom Sockets
■ Secure Sockets
■ Remote Activation
■ Enhanced Garbage Collection
■ Performance Increase
■ A policy file is needed

BasketBall Game
ScoreBoard

Demo

■ ScoreSender and ScoreReceiver
■ BBServer and BBScoreBoard
■ GameEvent and ShotAttempt
■ CurrentScore
■ BBEventGenerator
■ ScoreCanvas

Related Technologies

■ Leasing
■ Transactions
■ Distributed Events
■ Java Spaces
■ Jini

Building Distributed
Applications using JAVA - RMI

by,
Venkat

Intelligroup Inc.

(847) 292 - 8263
venkat@inforel.com

G.Venkat@Intelligroup.com

