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Topics for this presentation:Topics for this presentation:

▲ The need for and origins of CORBA
▲ Basic elements:

! ORBs, stubs, skeletons, IIOP, IDL
▲ Simple code examples in Java and C++
▲ CORBA services:

! naming, events, notification, transaction
▲ the future of CORBA and Java/EJB
▲ Overview of CORBA implementations
▲ CORBA resources



From mainframe applications...
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...to client/server applications...
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…to multi-tier distributed
applications
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Enterprise computingEnterprise computing

▲Enterprises have a variety of computing platforms
!Unix, 95/98/NT,  MVS, AS/400, VMS, Macintosh,

NC’s, VxWorks, etc.
▲Enterprises write applications in a variety of

programming languages
!C, C++, Java, COBOL, Basic, Perl, Smalltalk, etc.

▲▲ Enterprises need an open architecture to support theEnterprises need an open architecture to support the
heterogeneous environmentheterogeneous environment



Object-oriented computing for the
enterprise
Object-oriented computing for the
enterprise

▲ Enterprise applications are being written in terms of
objects - reusable components that can be accessed
over the enterprise network

▲ CORBA supplies the architecture for distributed
applications based on open standards



Distributed application advantagesDistributed application advantages

▲ Scalability
! Server replication

! Thin, heterogeneous clients

▲ Re-usability
▲ Partitioned functionality = easy updating of either

clients or servers



Competing technologies for distributed
objects
Competing technologies for distributed
objects

▲ Open standards based solutions
! Java, CORBA, EJB, RMI, IIOP, JTS/OTS, JNDI, JDBC,,

Servlets, JSP, Java Security
▲ The All-Microsoft solution

! COM, COM+, ActiveX, Visual C++, MTS, ASP, IIS, etc.
▲ Other proprietary solutions

! Message oriented middleware (MOMs - MQSeries, etc.)
! TP monitors



TP monitors, web front-endsTP monitors, web front-ends

▲ Quickly extends an
existing application for
access from the web

▲ Client context maintained
by server

▲ Limited to single process,
single machine

▲ Not object oriented or
truly distributed

▲ Jolt server consumes an
additional process

▲ Jolt client classes must be
either pre-installed or
downloaded

Example: BEA JoltExample: BEA Jolt



COM/DCOM, COM+COM/DCOM, COM+

▲ Rich, well-integrated
platform

▲ Object-oriented
▲ Web client access via:

! ActiveX controls &
COM/DCOM

! Active Server Pages,
HTTP and IIS

▲ Distributed - as long as its
Windows

▲ NT only
▲ Firewall issue
▲ Limited flexibility
▲ Security



CORBA vs. ad-hoc networked appsCORBA vs. ad-hoc networked apps

▲ Technical considerations:
▲ CORBA/EJB implementations have integration with

object databases, transaction services, security
services, directory services, etc.

▲ CORBA implementations automatically optimize
transport and marshalling strategies

▲ CORBA implementations automatically provide
threading models



CORBA vs. ad-hoc networked appsCORBA vs. ad-hoc networked apps

▲ Business considerations:
▲ Standards based
▲ Multiple competing interoperable implementations
▲ Buy vs. build tradeoffs
▲ Resource availability

" software engineers
" tools



The Object Management Group (OMG)The Object Management Group (OMG)

▲ Industry Consortium with over 855 member
companies formed to develop a distributed object
standard

▲ Accepted proposals for the various specifications put
forth to define:
! Communications infrastructure
! Standard interface between objects
! Object services

▲ Developed the spec for the Common Object Request
Broker Architecture (CORBA)



CORBA design goals/characteristics:CORBA design goals/characteristics:

▲ No need to pre-determine:
! The programming language
! The hardware platform
! The operating system
! The specific object request broker
! The degree of object distribution

▲  Open Architecture:
! Language-neutral Interface Definition Language (IDL)
! Language, platform and location transparent

▲ Objects could act as clients, servers or both
▲ The Object Request Broker (ORB) mediates the interaction

between client and object



IIOP - Internet Inter-ORB ProtocolIIOP - Internet Inter-ORB Protocol

▲ Specified by the OMG as the standard communication
protocol between  ORBs

▲ Resides on top of TCP/IP
▲ Developers don’t need to “learn” IIOP; the ORB handles this

for them
▲ Specifies common format for:

! object references, known as the Interoperable Object
Reference (IOR)

! Messages exchanged between a client and the object



Key definitions: ORB and BOAKey definitions: ORB and BOA
▲ Object Request Broker (ORB)

! Transports a client request to a remote object an returns the result. Implemented as:
" a set of client and server side libraries
" zero or more daemons in between, depending on ORB implementation, invocation

method, etc.
▲ Object Adapter (OA), an abstract specification

! Part of the server-side library - the interface between the ORB and the server process
! listens for client connections and requests
! maps the inbound requests to the desired target object instance

▲ Basic Object Adapter (BOA), a concrete specification
! The first defined OA for use in CORBA-compliant ORBs
! leaves many features unsupported, requiring proprietary extensions
! superceded by the Portable Object Adapter (POA), facilitating server-side ORB-neutral

code



What is an object reference?What is an object reference?
▲ An object reference is the distributed computing equivalent of a pointer

! CORBA defines the Interoperable Object Reference (IOR)
" IORs can be converted from raw reference to string form, and back
" Stringified IORs can be stored and retrieved by clients and servers using other

ORBs
! an IOR  contains a fixed object key, containing:

" the object’s fully qualified interface name (repository ID)
" user-defined data for the instance identifier

! An IOR can also contain transient information, such as:
" The host and port of its server
" metadata about the server’s ORB, for potential optimizations
" optional user defined data



CORBA object characteristicsCORBA object characteristics
▲ CORBA objects have identity

! A CORBA server can contain multiple instances of multiple interfaces
! An IOR uniquely identifies one object instance

▲ CORBA object references can be persistent
! Some CORBA objects are transient, short-lived and used by only one client
! But CORBA objects can be shared and long-lived

" business rules and policies decide when to “destroy” an object
" IORs can outlive client and even server process life spans

▲ CORBA objects can be relocated
! The fixed object key of an object reference does not include the object’s location
! CORBA objects may be relocated at admin time or runtime
! ORB implementations may support the relocation transparently

▲ CORBA supports replicated objects
! IORs with the same object key but different locations are considered replicas



CORBA server characteristicsCORBA server characteristics

▲ When we say “server” we usually mean server process, not
server machine

▲ One or more CORBA server processes may be running on a
machine

▲ Each CORBA server process may contain one or more
CORBA object instances, of one or more CORBA interfaces

▲ A CORBA server process does not have to be “heavyweight”
! e.g., a Java applet can be a CORBA server



Interfaces vs. Implementations

CORBA Objects are fully encapsulated
Accessed through well-defined interface
Internals not available - users of object have no knowledge of implementation
Interfaces & Implementations totally separate
For one interface, multiple implementations possible
One implementation may be supporting multiple interfaces

Object

IDL Interface



Location Transparency

A CORBA Object can be local to your process, in another process on the
same machine, or in another process on another machine

Process A Process B Process C

Machine X Machine Y



Stubs & Skeletons
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Stubs and Skeletons are automatically generated from IDL interfaces



Dynamic Invocation Interface
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Why IDL?Why IDL?
▲ IDL reconciles diverse object models and programming

languages
▲ Imposes the same object model on all supported languages
▲ Programming language independent means of describing data

types and object interfaces
! purely descriptive - no procedural components
! provides abstraction from implementation
! allows multiple language bindings to be defined

▲ A means for integrating and sharing objects from different
object models and languages



IDL simple data typesIDL simple data types

▲ Basic data types similar to C, C++ or Java
! long, long long, unsigned long, unsigned long long
! short, unsigned short
! float, double, long double
! char, wchar (ISO Unicode)
! boolean
! octet (raw data without conversion)
! any (self-describing variable)



IDL complex data typesIDL complex data types

▲ string - sequence of characters - bounded or unbounded
! string<256> msg   // bounded
! string msg   // unbounded

▲ wstring - sequence of Unicode characters - bounded or
unbounded

▲ sequence - one dimensional array whose members are
all of the same type - bounded or unbounded
! sequence<float, 100> mySeq   // bounded
! sequence<float> mySeq    // unbounded



IDL user defined data typesIDL user defined data types

▲ Facilities for creating your own types:
! typedef
! enum
! const
! struct
! union
! arrays
! exception

▲ preprocessor directives - #include #define



Operations and parametersOperations and parameters

▲ Return type of operations can be any IDL type
▲ each parameter has a direction (in, out, inout) and

a name
▲ similar to C/C++ function declarations



CORBA Development Process Using
IDL
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A simple example: IDLA simple example: IDL

// module Money
{
    interface Accounting
    {
      float get_outstanding_balance();
    };
};



A Java clientA Java client
import org.omg.CORBA.*;
public class Client
{

public static void main(String args[]) {
try {

// Initialize the ORB.
System.out.println("Initializing the ORB...");
ORB orb = ORB.init(args, null);
// bind to an Accounting Object named "Account"
System.out.println("Binding...");
Money.Accounting acc =Money.AccountingHelper.bind(orb,"Account");
// Get the balance of the account.
System.out.println("Making Remote Invocation...");
float balance = acc.get_outstanding_balance();
// Print out the balance.
System.out.println("The balance is $" + balance);

}
catch(SystemException e) {
    System.err.println("Oops!  Caught: " + e);

}
}

}



A Java server objectA Java server object
import Money.*;
import org.omg.CORBA.*;
class AccountingImpl extends _AccountingImplBase
{
public float get_outstanding_balance()

{
float bal = (float)14100.00; // Implement real outstanding balance function here
return bal;

}
public static void main(String[] args)

{
 try {

ORB orb = ORB.init(args, null); // Initialize the ORB.
 BOA boa = orb.BOA_init();      // Initialize the BOA.
System.out.println("Instantiating an AccountingImpl.");
AccountingImpl impl = new AccountingImpl("Account");
boa.obj_is_ready(impl);
System.out.println("Entering event loop."); // Wait for incoming requests
boa.impl_is_ready();

}
catch(SystemException e) {

System.err.println("Oops!  Caught: " + e);
}

         }
}



A C++ clientA C++ client
#include <Money_c.hh>

int main (int argc, char* const* argv)
{

  try {
    cout << "Initializing ORB..." << endl;
    CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);

    cout << "Binding..." << endl;
    Money::Accounting_var acc = Money::Accounting::_bind();

    cout << "Making Remote Invocation..." << endl;
    cout << "The outstanding balance is "
      << acc->get_outstanding_balance()

<< endl;
  }
  catch (CORBA::Exception& e) {
    cerr << "Caught CORBA Exception: " << e << endl;
  }
  return 0;
}



A C++ server objectA C++ server object
#include <Money_s.hh>
class AccountingImpl : public _sk_Money::_sk_Accounting
{
public:
  AccountingImpl(const char* name) : _sk_Accounting(name) {}
  CORBA::Float get_outstanding_balance()
  {
    // implement real outstanding balance function here
    return 3829.29;
  }
};

int main (int argc, char* const* argv)
{
  // Initialize ORB.
  CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);
  CORBA::BOA_var boa = orb->BOA_init(argc, argv);
  cout << "Instantiating an AccountingImpl" << endl;
  AccountingImpl impl("Accounting");
  boa->obj_is_ready(&impl);
  cout << "Entering event loop" << endl;
  boa->impl_is_ready();
  return 0;
}



CORBA servicesCORBA services

▲ The OMG has defined a set of Common Object
Services

▲ Frequently used components needed for building
robust applications

▲ Typically supplied by vendors
▲ OMG defines interfaces to services to ensure

interoperability



Popular CORBA servicesPopular CORBA services

▲ Naming
! maps logical names to to server objects
! references may be hierarchical, chained
! returns object reference to requesting client

▲ Events
! asynchronous messaging
! decouples suppliers and consumers of information



Popular CORBA servicesPopular CORBA services

▲ Notification
! More robust enhancement of event service
! Quality of Service properties
! Event filtering
! Structured events

▲ Transaction
! Ensures correct state of transactional objects

" Manages distributed commit/rollback
" Implements the protocols required to guarantee the ACID

(Atomicity, Consistency, Isolation, and Durability) properties of
transactions



CORBA Internet Access via IIOPCORBA Internet Access via IIOP
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The future: CORBA 3The future: CORBA 3

▲ Spec is complete. Final adoption due in November.
▲ Internet related features:
▲ Standard for callbacks through firewalls

" currently not allowed by most firewalls, proprietary

▲ Interoperable naming service
" standard bootstrapping mechanism to find naming services
" iioploc://www.myserver.com/mynamingservice



CORBA 3CORBA 3

▲ Quality of service enhancements
! Asynchronous Messaging

" invocation result retrieval by polling or callback
! Quality of Service Control

"  Clients and objects may control ordering (by time, priority, or
deadline); set priority, deadlines, and time-to-live

" set a start time and end time for time-sensitive invocations
"  control routing policy and network routing hop count



CORBA 3CORBA 3

▲ Minimum, Fault-Tolerant, and Real-Time CORBA
! minimum CORBA - for embedded systems

" strips out unnecessary pieces - dynamic invocation, etc.
! Real-time CORBA

" standardizes resource control - threads, protocols, connections
" uses priority models to achieve predictable behavior for both

hard and statistical realtime environments
! Fault-tolerant CORBA

" entity redundancy and fault management control
" spec is still in process



CORBA 3CORBA 3

▲ CORBA Component Model (CCM)
! Spec approved on September 2, 1999
! Support for Java, COBOL, Microsoft COM/DCOM, C++,

Ada, C and Smalltalk
! Container environment that is persistent, transactional,

and secure
! Containers will provides interface and event resolution
! Integration/interoperability with Enterprise JavaBeans

(EJBs)



CORBA vendorsCORBA vendors

▲ Inprise/Borland VisiBroker:
! http://www.borland.com/visibroker/

▲ Iona Orbix:
! http://www.iona.com

▲ Rogue Wave Nouveau:
!  http://www.roguewave.com/products/nouveau/

▲ ObjectSpace Voyager:
! http://www.objectspace.com/products/vgrOverview.htm



Real-world implementationsReal-world implementations
▲ Commercial products

! Oracle8i
! SilverStream Application Server
! BEA WebLogic Server
! Vitria BusinessWare enterprise integration server
! Evergreen Ecential ecommerce engine
! enCommerce getAccess security server

▲ End-user applications:
!  http://www.borland.com/visibroker/cases/
! http://www.iona.com/info/aboutus/customers/index.html



Example: Cysive - Cisco
Internetworking Products Center
Example: Cysive - Cisco
Internetworking Products Center



Example: Cisco IPCExample: Cisco IPC

▲ Server-side Java system
! Provides extreme scalability and greatly accelerated

performance
" allows IPC to share data and system resources across multiple

transactions
" maintains continuous server connections throughout long,

complex transactions
" process many more orders in a shorter period of time



Example: Cisco IPCExample: Cisco IPC

▲ Significant improvement of extensibility
! Built on an object-oriented foundation, providing a modular

infrastructure
! New features can be added
! Back-end applications, such as Oracle Financials, can be

linked to IPC quite easily
! System offers greater availability than the earlier version,

requiring almost no downtime—planned or unplanned—as
capabilities are added



Resources: WebResources: Web

▲ Web sites:
! OMG: http://www.omg.org/
! Washington University: http://www.cs.wustl.edu/~schmidt
! Free CORBA page

" http://adams.patriot.net/~tvalesky/freecorba.html
! Cetus links (links to CORBA vendors, benchmarks, etc.):

" http://www.cetus-links.org/oo_object_request_brokers.htm

▲ Newsgroups:
! comp.object.corba
! comp.lang.java.corba



Resources: booksResources: books

▲ Client/Server Programming With Java and CORBA (2nd
edition)
! by Robert Orfali and Dan Harkey

▲ Programming with VisiBroker, A Developer's Guide to
VisiBroker for Java
! by Doug Pedrick, Jonathan Weedon, Jon Goldberg, and Erik

Bleifield
▲ Advanced CORBA Programming with C++

! by Michi Henning and Steve Vinoski




