
AN INTRODUCTION TO CORBAAN INTRODUCTION TO CORBA

Paul Jonusaitis
jonusait@ix.netcom.com

Topics for this presentation:Topics for this presentation:

▲ The need for and origins of CORBA
▲ Basic elements:

! ORBs, stubs, skeletons, IIOP, IDL
▲ Simple code examples in Java and C++
▲ CORBA services:

! naming, events, notification, transaction
▲ the future of CORBA and Java/EJB
▲ Overview of CORBA implementations
▲ CORBA resources

From mainframe applications...

Mainframe Data andMainframe Data and
ApplicationsApplications

Terminal AccessTerminal Access

...to client/server applications...

Fat ClientFat Client

UnixUnix
ClientClient

MacMac
ClientClient

WindowsWindows
ClientClient CorporateCorporate

DataData

Oracle, DB2, MSOracle, DB2, MS
SQL, Informix,SQL, Informix,
Sybase, etc.Sybase, etc.

Back-end DataBack-end Data

…to multi-tier distributed
applications

CorporateCorporate
DataData

Back-end DataBack-end Data
Middle TierMiddle Tier

(NT/Unix/AS400)(NT/Unix/AS400)Thin ClientThin Client

WindowsWindows
ClientClient

JavaJava
ClientClient

BrowserBrowser
ClientClient

MobileMobile
ClientClient

Middle-Tier ServicesMiddle-Tier Services
Business ProcessesBusiness Processes

Oracle, DB2, MSOracle, DB2, MS
SQL, Informix,SQL, Informix,
SybaseSybase

ApplicationApplication
Server:Server:

Enterprise computingEnterprise computing

▲Enterprises have a variety of computing platforms
!Unix, 95/98/NT, MVS, AS/400, VMS, Macintosh,

NC’s, VxWorks, etc.
▲Enterprises write applications in a variety of

programming languages
!C, C++, Java, COBOL, Basic, Perl, Smalltalk, etc.

▲▲ Enterprises need an open architecture to support theEnterprises need an open architecture to support the
heterogeneous environmentheterogeneous environment

Object-oriented computing for the
enterprise
Object-oriented computing for the
enterprise

▲ Enterprise applications are being written in terms of
objects - reusable components that can be accessed
over the enterprise network

▲ CORBA supplies the architecture for distributed
applications based on open standards

Distributed application advantagesDistributed application advantages

▲ Scalability
! Server replication

! Thin, heterogeneous clients

▲ Re-usability
▲ Partitioned functionality = easy updating of either

clients or servers

Competing technologies for distributed
objects
Competing technologies for distributed
objects

▲ Open standards based solutions
! Java, CORBA, EJB, RMI, IIOP, JTS/OTS, JNDI, JDBC,,

Servlets, JSP, Java Security
▲ The All-Microsoft solution

! COM, COM+, ActiveX, Visual C++, MTS, ASP, IIS, etc.
▲ Other proprietary solutions

! Message oriented middleware (MOMs - MQSeries, etc.)
! TP monitors

TP monitors, web front-endsTP monitors, web front-ends

▲ Quickly extends an
existing application for
access from the web

▲ Client context maintained
by server

▲ Limited to single process,
single machine

▲ Not object oriented or
truly distributed

▲ Jolt server consumes an
additional process

▲ Jolt client classes must be
either pre-installed or
downloaded

Example: BEA JoltExample: BEA Jolt

COM/DCOM, COM+COM/DCOM, COM+

▲ Rich, well-integrated
platform

▲ Object-oriented
▲ Web client access via:

! ActiveX controls &
COM/DCOM

! Active Server Pages,
HTTP and IIS

▲ Distributed - as long as its
Windows

▲ NT only
▲ Firewall issue
▲ Limited flexibility
▲ Security

CORBA vs. ad-hoc networked appsCORBA vs. ad-hoc networked apps

▲ Technical considerations:
▲ CORBA/EJB implementations have integration with

object databases, transaction services, security
services, directory services, etc.

▲ CORBA implementations automatically optimize
transport and marshalling strategies

▲ CORBA implementations automatically provide
threading models

CORBA vs. ad-hoc networked appsCORBA vs. ad-hoc networked apps

▲ Business considerations:
▲ Standards based
▲ Multiple competing interoperable implementations
▲ Buy vs. build tradeoffs
▲ Resource availability

" software engineers
" tools

The Object Management Group (OMG)The Object Management Group (OMG)

▲ Industry Consortium with over 855 member
companies formed to develop a distributed object
standard

▲ Accepted proposals for the various specifications put
forth to define:
! Communications infrastructure
! Standard interface between objects
! Object services

▲ Developed the spec for the Common Object Request
Broker Architecture (CORBA)

CORBA design goals/characteristics:CORBA design goals/characteristics:

▲ No need to pre-determine:
! The programming language
! The hardware platform
! The operating system
! The specific object request broker
! The degree of object distribution

▲ Open Architecture:
! Language-neutral Interface Definition Language (IDL)
! Language, platform and location transparent

▲ Objects could act as clients, servers or both
▲ The Object Request Broker (ORB) mediates the interaction

between client and object

IIOP - Internet Inter-ORB ProtocolIIOP - Internet Inter-ORB Protocol

▲ Specified by the OMG as the standard communication
protocol between ORBs

▲ Resides on top of TCP/IP
▲ Developers don’t need to “learn” IIOP; the ORB handles this

for them
▲ Specifies common format for:

! object references, known as the Interoperable Object
Reference (IOR)

! Messages exchanged between a client and the object

Key definitions: ORB and BOAKey definitions: ORB and BOA
▲ Object Request Broker (ORB)

! Transports a client request to a remote object an returns the result. Implemented as:
" a set of client and server side libraries
" zero or more daemons in between, depending on ORB implementation, invocation

method, etc.
▲ Object Adapter (OA), an abstract specification

! Part of the server-side library - the interface between the ORB and the server process
! listens for client connections and requests
! maps the inbound requests to the desired target object instance

▲ Basic Object Adapter (BOA), a concrete specification
! The first defined OA for use in CORBA-compliant ORBs
! leaves many features unsupported, requiring proprietary extensions
! superceded by the Portable Object Adapter (POA), facilitating server-side ORB-neutral

code

What is an object reference?What is an object reference?
▲ An object reference is the distributed computing equivalent of a pointer

! CORBA defines the Interoperable Object Reference (IOR)
" IORs can be converted from raw reference to string form, and back
" Stringified IORs can be stored and retrieved by clients and servers using other

ORBs
! an IOR contains a fixed object key, containing:

" the object’s fully qualified interface name (repository ID)
" user-defined data for the instance identifier

! An IOR can also contain transient information, such as:
" The host and port of its server
" metadata about the server’s ORB, for potential optimizations
" optional user defined data

CORBA object characteristicsCORBA object characteristics
▲ CORBA objects have identity

! A CORBA server can contain multiple instances of multiple interfaces
! An IOR uniquely identifies one object instance

▲ CORBA object references can be persistent
! Some CORBA objects are transient, short-lived and used by only one client
! But CORBA objects can be shared and long-lived

" business rules and policies decide when to “destroy” an object
" IORs can outlive client and even server process life spans

▲ CORBA objects can be relocated
! The fixed object key of an object reference does not include the object’s location
! CORBA objects may be relocated at admin time or runtime
! ORB implementations may support the relocation transparently

▲ CORBA supports replicated objects
! IORs with the same object key but different locations are considered replicas

CORBA server characteristicsCORBA server characteristics

▲ When we say “server” we usually mean server process, not
server machine

▲ One or more CORBA server processes may be running on a
machine

▲ Each CORBA server process may contain one or more
CORBA object instances, of one or more CORBA interfaces

▲ A CORBA server process does not have to be “heavyweight”
! e.g., a Java applet can be a CORBA server

Interfaces vs. Implementations

CORBA Objects are fully encapsulated
Accessed through well-defined interface
Internals not available - users of object have no knowledge of implementation
Interfaces & Implementations totally separate
For one interface, multiple implementations possible
One implementation may be supporting multiple interfaces

Object

IDL Interface

Location Transparency

A CORBA Object can be local to your process, in another process on the
same machine, or in another process on another machine

Process A Process B Process C

Machine X Machine Y

Stubs & Skeletons

client program

callcall

language
mapping

operation
signatures

Location ServiceLocation Service
ORBORB

ORB OperationsORB Operations Basic Object AdapterBasic Object Adapter

MultithreadingMultithreading

StubStub SkeletonSkeleton

language mapping
entry points

method

object
implementation

Transport LayerTransport Layer

Stubs and Skeletons are automatically generated from IDL interfaces

Dynamic Invocation Interface

ORBORB

ORB OperationsORB Operations

client program

dynamic
interface

query

object
implementation

method

* * Dynamic Invocation InterfaceDynamic Invocation Interface

DII* calls

InterfaceInterface
RepositoryRepository

SkeletonSkeleton

Basic Object AdapterBasic Object AdapterDII*DII*

Why IDL?Why IDL?
▲ IDL reconciles diverse object models and programming

languages
▲ Imposes the same object model on all supported languages
▲ Programming language independent means of describing data

types and object interfaces
! purely descriptive - no procedural components
! provides abstraction from implementation
! allows multiple language bindings to be defined

▲ A means for integrating and sharing objects from different
object models and languages

IDL simple data typesIDL simple data types

▲ Basic data types similar to C, C++ or Java
! long, long long, unsigned long, unsigned long long
! short, unsigned short
! float, double, long double
! char, wchar (ISO Unicode)
! boolean
! octet (raw data without conversion)
! any (self-describing variable)

IDL complex data typesIDL complex data types

▲ string - sequence of characters - bounded or unbounded
! string<256> msg // bounded
! string msg // unbounded

▲ wstring - sequence of Unicode characters - bounded or
unbounded

▲ sequence - one dimensional array whose members are
all of the same type - bounded or unbounded
! sequence<float, 100> mySeq // bounded
! sequence<float> mySeq // unbounded

IDL user defined data typesIDL user defined data types

▲ Facilities for creating your own types:
! typedef
! enum
! const
! struct
! union
! arrays
! exception

▲ preprocessor directives - #include #define

Operations and parametersOperations and parameters

▲ Return type of operations can be any IDL type
▲ each parameter has a direction (in, out, inout) and

a name
▲ similar to C/C++ function declarations

CORBA Development Process Using
IDL

IDLIDL
DefinitionDefinition

IDLIDL
CompilerCompiler

Stub SourceStub Source Skeleton SourceSkeleton Source

Client
Implementation

Client
 Program
Source

Object
Implementation

Object
Implementation

Source

Java or C++Java or C++
CompilerCompiler

Client Program Client Program

Java or C++Java or C++
CompilerCompiler

Object ImplementationObject Implementation

A simple example: IDLA simple example: IDL

// module Money
{
 interface Accounting
 {
 float get_outstanding_balance();
 };
};

A Java clientA Java client
import org.omg.CORBA.*;
public class Client
{

public static void main(String args[]) {
try {

// Initialize the ORB.
System.out.println("Initializing the ORB...");
ORB orb = ORB.init(args, null);
// bind to an Accounting Object named "Account"
System.out.println("Binding...");
Money.Accounting acc =Money.AccountingHelper.bind(orb,"Account");
// Get the balance of the account.
System.out.println("Making Remote Invocation...");
float balance = acc.get_outstanding_balance();
// Print out the balance.
System.out.println("The balance is $" + balance);

}
catch(SystemException e) {
 System.err.println("Oops! Caught: " + e);

}
}

}

A Java server objectA Java server object
import Money.*;
import org.omg.CORBA.*;
class AccountingImpl extends _AccountingImplBase
{
public float get_outstanding_balance()

{
float bal = (float)14100.00; // Implement real outstanding balance function here
return bal;

}
public static void main(String[] args)

{
 try {

ORB orb = ORB.init(args, null); // Initialize the ORB.
 BOA boa = orb.BOA_init(); // Initialize the BOA.
System.out.println("Instantiating an AccountingImpl.");
AccountingImpl impl = new AccountingImpl("Account");
boa.obj_is_ready(impl);
System.out.println("Entering event loop."); // Wait for incoming requests
boa.impl_is_ready();

}
catch(SystemException e) {

System.err.println("Oops! Caught: " + e);
}

 }
}

A C++ clientA C++ client
#include <Money_c.hh>

int main (int argc, char* const* argv)
{

 try {
 cout << "Initializing ORB..." << endl;
 CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);

 cout << "Binding..." << endl;
 Money::Accounting_var acc = Money::Accounting::_bind();

 cout << "Making Remote Invocation..." << endl;
 cout << "The outstanding balance is "
 << acc->get_outstanding_balance()

<< endl;
 }
 catch (CORBA::Exception& e) {
 cerr << "Caught CORBA Exception: " << e << endl;
 }
 return 0;
}

A C++ server objectA C++ server object
#include <Money_s.hh>
class AccountingImpl : public _sk_Money::_sk_Accounting
{
public:
 AccountingImpl(const char* name) : _sk_Accounting(name) {}
 CORBA::Float get_outstanding_balance()
 {
 // implement real outstanding balance function here
 return 3829.29;
 }
};

int main (int argc, char* const* argv)
{
 // Initialize ORB.
 CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);
 CORBA::BOA_var boa = orb->BOA_init(argc, argv);
 cout << "Instantiating an AccountingImpl" << endl;
 AccountingImpl impl("Accounting");
 boa->obj_is_ready(&impl);
 cout << "Entering event loop" << endl;
 boa->impl_is_ready();
 return 0;
}

CORBA servicesCORBA services

▲ The OMG has defined a set of Common Object
Services

▲ Frequently used components needed for building
robust applications

▲ Typically supplied by vendors
▲ OMG defines interfaces to services to ensure

interoperability

Popular CORBA servicesPopular CORBA services

▲ Naming
! maps logical names to to server objects
! references may be hierarchical, chained
! returns object reference to requesting client

▲ Events
! asynchronous messaging
! decouples suppliers and consumers of information

Popular CORBA servicesPopular CORBA services

▲ Notification
! More robust enhancement of event service
! Quality of Service properties
! Event filtering
! Structured events

▲ Transaction
! Ensures correct state of transactional objects

" Manages distributed commit/rollback
" Implements the protocols required to guarantee the ACID

(Atomicity, Consistency, Isolation, and Durability) properties of
transactions

CORBA Internet Access via IIOPCORBA Internet Access via IIOP

Java Enabled
Web Browser

Web Server
HTML

&
Java Applets

HTTP

HTML Document

<APPLET…>
</APPLET>

Java Applet

?

Distributed
Objects

Relational
Database

JDBC
ODBC
DBMS-specific

Proxy
server

Naming
service

IIOP

The future: CORBA 3The future: CORBA 3

▲ Spec is complete. Final adoption due in November.
▲ Internet related features:
▲ Standard for callbacks through firewalls

" currently not allowed by most firewalls, proprietary

▲ Interoperable naming service
" standard bootstrapping mechanism to find naming services
" iioploc://www.myserver.com/mynamingservice

CORBA 3CORBA 3

▲ Quality of service enhancements
! Asynchronous Messaging

" invocation result retrieval by polling or callback
! Quality of Service Control

" Clients and objects may control ordering (by time, priority, or
deadline); set priority, deadlines, and time-to-live

" set a start time and end time for time-sensitive invocations
" control routing policy and network routing hop count

CORBA 3CORBA 3

▲ Minimum, Fault-Tolerant, and Real-Time CORBA
! minimum CORBA - for embedded systems

" strips out unnecessary pieces - dynamic invocation, etc.
! Real-time CORBA

" standardizes resource control - threads, protocols, connections
" uses priority models to achieve predictable behavior for both

hard and statistical realtime environments
! Fault-tolerant CORBA

" entity redundancy and fault management control
" spec is still in process

CORBA 3CORBA 3

▲ CORBA Component Model (CCM)
! Spec approved on September 2, 1999
! Support for Java, COBOL, Microsoft COM/DCOM, C++,

Ada, C and Smalltalk
! Container environment that is persistent, transactional,

and secure
! Containers will provides interface and event resolution
! Integration/interoperability with Enterprise JavaBeans

(EJBs)

CORBA vendorsCORBA vendors

▲ Inprise/Borland VisiBroker:
! http://www.borland.com/visibroker/

▲ Iona Orbix:
! http://www.iona.com

▲ Rogue Wave Nouveau:
! http://www.roguewave.com/products/nouveau/

▲ ObjectSpace Voyager:
! http://www.objectspace.com/products/vgrOverview.htm

Real-world implementationsReal-world implementations
▲ Commercial products

! Oracle8i
! SilverStream Application Server
! BEA WebLogic Server
! Vitria BusinessWare enterprise integration server
! Evergreen Ecential ecommerce engine
! enCommerce getAccess security server

▲ End-user applications:
! http://www.borland.com/visibroker/cases/
! http://www.iona.com/info/aboutus/customers/index.html

Example: Cysive - Cisco
Internetworking Products Center
Example: Cysive - Cisco
Internetworking Products Center

Example: Cisco IPCExample: Cisco IPC

▲ Server-side Java system
! Provides extreme scalability and greatly accelerated

performance
" allows IPC to share data and system resources across multiple

transactions
" maintains continuous server connections throughout long,

complex transactions
" process many more orders in a shorter period of time

Example: Cisco IPCExample: Cisco IPC

▲ Significant improvement of extensibility
! Built on an object-oriented foundation, providing a modular

infrastructure
! New features can be added
! Back-end applications, such as Oracle Financials, can be

linked to IPC quite easily
! System offers greater availability than the earlier version,

requiring almost no downtime—planned or unplanned—as
capabilities are added

Resources: WebResources: Web

▲ Web sites:
! OMG: http://www.omg.org/
! Washington University: http://www.cs.wustl.edu/~schmidt
! Free CORBA page

" http://adams.patriot.net/~tvalesky/freecorba.html
! Cetus links (links to CORBA vendors, benchmarks, etc.):

" http://www.cetus-links.org/oo_object_request_brokers.htm

▲ Newsgroups:
! comp.object.corba
! comp.lang.java.corba

Resources: booksResources: books

▲ Client/Server Programming With Java and CORBA (2nd
edition)
! by Robert Orfali and Dan Harkey

▲ Programming with VisiBroker, A Developer's Guide to
VisiBroker for Java
! by Doug Pedrick, Jonathan Weedon, Jon Goldberg, and Erik

Bleifield
▲ Advanced CORBA Programming with C++

! by Michi Henning and Steve Vinoski

