
Page 1

Mastering
LINUX/UNIX

Regular Expressions
Presenter: Glenn Martin Stafford

stafford_g@bellsouth.net

As strange as regular expressions sounds, it is nothing more than a pattern matching tool.
This extremely powerful tool allows anyone to formulate powerful queries!

By mastering regular expressions (regex), one can perform complex search and replace
operations, validate input, and parse text with ease. This include cleaning data, extracting
information, or building sophisticated search features, regex will undoubtedly become an
invaluable part of your programming toolkit.

This presentation will demonstrate the powerful use of regular expressions with the
commands vi, sed, grep, and awk.

Anyone, from novices to highly skilled in the Unix/Linux professional can benefit from this
presentation.

Speaker Bio
Glenn Stafford is a veteran Unix/Linux professional best known for automating server
installations, software code conversions, version control environments, shell programming,
and automating system administration tasks.
His notable accomplishments include:
• Automating installations where servers were ready for full accreditation within 30

minutes without the use of Commercial Off The Shelf configuration tools.
• Automated the migration of VmWare virtual servers to he AWS Government Club

services.

When Glenn lived in the Chicagoland area, he was a dedicated member of Uniforum
presenting on various topics and facilitating the UNIX Bootcamp and UNIX Top Gun
workshops. Glenn is also known for his success as a top-gun instructor for Information
Technology Development Systems and Sun Microsystems.

Page 2

Module VIII - UNIX Regular Expressions

• The Objective: To Understand The
Command Line That Is Executed Above.

• After This Lecture, You Should At Least
Master The Basics of Regular
Expressions
–Possess The Knowledge To Dissect

and Interpret Simple To Complex
Regular Expressions!

$ sed 's/\([0-9][0-9]*\)\.\{5,\}\([0-9][0-9]\)/\1-\2/' numbers

What does the following mean?

The objective here is simple: Understand the command line in the above
example. Upon the completion of this lecture, you should have the basic
knowledge that will you to dissect UNIX regular expressions and interpret
what’s happening! With the examples provide, you should realize the
importance of UNIX regular expressions and include this as part of your skill
sets.

Regular Expressions Defined:

UNIX Regular Expressions is nothing more than describing a text pattern (a
sequence of characters). In other words, regular expressions define a sequence
of characters to match. In addition to matching these patterns, there are tools
that allow us to perform powerful string substitutions.

If you fear regular expressions, you are normal! However, regular expressions
are equivalent to idiomatic expressions.

Page 3

grep Command Family

DESCRIPTION

grep, egrep, fgrep - search a file for a string orn
regular expression

SYNOPSIS
grep [-bchilnsvw] [-e expression] [filename...]

[-bchilnsvw] [expression] [filename...]

egrep [-bchilnsv] [-e expression] [-f filename]
[-bchilnsvw]:[expression] [filename...]

fgrep [-bchilnsvx] [-e string] [-f filename] [string] [filename...]

The purpose of this slide is to educate the users that there is a family of grep commands.
These commands are used to perform very powerful pattern matches. However, there is
confusion to what these commands are capable of.

The fgrep command is fixed string pattern matching command. It does not support regular
expressions.

The grep command can accept the common set of regular expressions. Common character
sets used include:

The egrep command is the extended grep command. It supports the extended set set of
regular expressions such as:

In addition, extended regular expressions support closure notations that that stipulates the
frequency to repeat specified regular expression (examples provide later).

Page 4

grep Command Family (Linux)

SYNOPSIS

grep [OPTION...] PATTERNS [FILE...]

grep [OPTION...] -e PATTERNS ... [FILE...]

grep [OPTION...] -f PATTERN_FILE ... [FILE...]

$ file /usr/bin/grep /usr/bin/{f,e}grep

/usr/bin/grep: ELF 64-bit LSB pie executable …

/usr/bin/fgrep: a /usr/bin/sh script, ASCII text
executable

/usr/bin/egrep: a /usr/bin/sh script, ASCII text
executable

$ cat /usr/bin/egrep

#!/usr/bin/sh

exec grep -E "$@"

In original implementations of the Unix system, the fgrep, egrep, and grep commands were
3 separate files. However, there were some subtle variations. For example, for HP’s UNIX
version, HPUX, these three commands had the same inode number which means they are
thre same file.

In this slide, you will the grep command synopsis highlights two –e and –f options:

-e interpret PATTERNS as extended regular expressions

-f Interpret PATTERNS as fixed strings, not regular expressions.

In addition, notice the file command reports, the fgrep and egrep commands are shell
scripts, whereas grep is a compiled program.

Notice with the cat command displays the contents of the egrep script. Notice the execution
of the grep command using the –E option to interpret PATTERNS as extended regular
expressions.

Page 5

fgrep/grep Examples

$ fgrep fish fortunes
A woman without a man is like a fish without a bicycle.
No one can feel as helpless as the owner of a sick goldfish.
Time is about the stream I go a-fishing in.
$ fgrep '^[AEIOU]' fortunes.

$ grep '^[AEIOU]' fortunes
A modem is a baudy house.
A truly wise man never plays leapfrog with a Unicorn.
A woman without a man is like a fish without a bicycle.
An elephant is a mouse with an operating system.
Any time things appear to going better, you have overlooked something.
Armadillo: Supplying weapons to a Spanish pickle.
E Pluribus UNIX
Every program is a part of some other program, and rarely fits.
If at first you don't succeed, give up, don't be a darn fool.
Old programmers never die. They just branch to a new address.
On a clear disk you can seek forever.
I must have slipped a disk; my pack hurts.

In the first example (fgrep fish), we’re performing a pattern match on the exact character
string sequence “fish” which can appear anywhere on the line of text.

In the second example, we’re attempting match a capitalizes vowel at the beginning of the
line. Unfortunately, fgrep doesn’t support regular expressions. This pattern match specified
with the fgrep command is trying to match the character string '^[AEIOU]' exactly.

Notice in the third example, we can satisfy attempting to match an line that begins with a
vowel at the beginning of a line that is capitalized. The expression, “^[AEIOU]” says match
a capital vowel at the beginning of a line. We’re not interested with what follows in the
pattern match.

Please note the circumflex character (^) has two purposes. Outside square braces it must be
list first to match at the beginning of a line. Inside square braces - don’t match the single
character values listed in the square braces.

Page 6

egrep example

$ grep ' paper | people ' fortunes

$ egrep ' paper | people ' fortunes
Line printer paper is strongest at preforations.
Man Year: 730 people working feverishly until noon.
Nudists are people who wear one-button suits.
$ egrep '^stu(01|02)' /etc/passwd
stu01a:x:7001:7001:Student 1a:/home/stu01a:/bin/bash
stu02a:x:7002:7002:Student 2a:/home/stu02a:/bin/bash
stu01b:x:8001:8001:Student 1b:/home/stu01b:/bin/ksh
stu02b:x:8002:8002:Student 2b:/home/stu02b:/bin/ksh
stu01c:x:9001:9001:Student 1c:/home/stu01c:/bin/csh
stu02c:x:9002:9002:Student 2c:/home/stu02c:/bin/csh

This slide illustrates how grep doesn’t support extended regular expressions.

In the first example, we’re attempting to match the strings paper or people anywhere on the
line. However, don’t expect the grep command to use the logical or(ing) of pattern
matching.

However, in the second we are successful in using the pipe character for the logical or
condition to match paper or people.

In the third example we are successful in matching any character string that:

starts with the string stu at the beginning of the line.
The next two characters must be 01, 02, or 03.

Thus, the about illustrates text records that can satisfy the match:

stu01a
stu02a
stu01b
stu02b
stu01c
stu02c

Can you think of other possibilities that would satisfy the match?

Page 7

Match at Beginning/End of Line

$ grep '^No' fortunes
Now is the time for all good men to come to the aid of their country.
No one can fell as helpless as the owner of a sick goldfish.

$ '^stu01' /etc/passwd
stu01a:x:7001:7001:Student 1a:/home/stu01a:/bin/bash
stu01b:x:8001:8001:Student 1b:/home/stu01b:/bin/ksh
stu01c:x:9001:9001:Student 1c:/home/stu01c:/bin/csh

^ Match At The Beginning Of A Line

match lines that end with a "d"
$ grep 'd$' fortunes
The End

Match lines ending in a 3-letter shell "
$grep '/bin/.sh$' /etc/passwd
stu01b:x:8001:8001:Student 1b:/home/stu01b:/bin/ksh
stu02b:x:8002:8002:Student 2b:/home/stu02b:/bin/ksh
stu03b:x:8003:8003:Student 3b:/home/stu03b:/bin/ksh
stu01c:x:9001:9001:Student 1c:/home/stu01c:/bin/csh
stu02c:x:9002:9002:Student 2c:/home/stu02c:/bin/csh
stu03c:x:9003:9003:Student 3c:/home/stu03c:/bin/csh

$ Match At The End Of Line.

In this slide we illustrate matching at the beginning of the line and at the end of a line.

In the first set of examples, we illustrate matching at the beginning of a line. The
expression, '^No', states we want to matching at the beginning of a line a capital N
followed by a lowercase o. This is why Now and No for the phrases match this pattern. In
the second part, the expression, 'stu0', is to match the character string stu01 at the beginning
of each record in the password file.

In the second set of examples, the expression, ‘d$’, states we want to match a line that has
the character d at the very end of the line. The record The End is a match. In the pattern
match example, the expression ‘/bin/.sh$’ states to match /bin/, followd by any single
character, followed by sh. This string is to be matched at the end of the line. We are simply
matching shells that are 3 characters long ending is sh.

Page 8

[LIST] Match A Single Character In A Specified List.

Match Disk or disk
===> grep '[Dd]isk' fortunes
Disk crisis, please clean up!
On a clear disk you can seek forever.
I must have slipped a disk; my pack hurts.

Match csh or ksh
===> grep '[ck]sh$' /etc/passwd
stu01b:x:8001:8001:Student 1b:/home/stu01b:/bin/ksh
stu02b:x:8002:8002:Student 2b:/home/stu02b:/bin/ksh
stu03b:x:8003:8003:Student 3b:/home/stu03b:/bin/ksh
stu01c:x:9001:9001:Student 1c:/home/stu01c:/bin/csh
stu02c:x:9002:9002:Student 2c:/home/stu02c:/bin/csh
stu03c:x:9003:9003:Student 3c:/home/stu03c:/bin/csh

This slide illustrates features for using a single character match inside square braces.

In example one, we want to match an uppercase or lowercase d; followed by the string isk.
We’re basically looking for the word Disk or disk that can appear anywhere in the text
record. Notice no space was specified.

In the second example we’re looking for pattern matches in the /etc/passwd file, that begins
with a c or k; followed by sh that appears at the end of line. We’re looking for csh or ksh
matches at the end of line.

Other examples of ranges include:

Matching single characters is a very powerful expression matching patterns.

Page 9

match lines that don't end with "."
$ grep '[^\.]$' fortunes
Words are the voice of heart
E Pluribus UNIX
Helping others ==> we all benefit
Disk crisis, please clean up!
Love the Sea? I dote upon it - from the beach
The future isn't what it used to be!
Three witches had three watches. Which witch was watching which watch?
You might have mail
The End

match lines that don’t match the letters A through S at the beginning
$ grep '^[^A-S]' fortunes
Words are the voice of heart
* UNIX was a Trademark of Bell Laboratories.
Writing free verse is like playing tennis with the net down.
The future isn't what it used to be!
The rain in Portugal falls mainly in the mountains.
The rain in Spain falls mainly in the plain.
Time is about the stream I go a-fishing in.
Three witches had three watches. Which witch was watching which watch?
You might have mail
The End

[^LIST] Negate Matching a Single Character In Specified List.

This slide illustrates two things. First it shows how to use the negation of a single character
rangeinside square braces. Then it illustrates using the circumflex (^) character to match at
the beginning; then not to match a single character in a range.
In the first example we want to not match any line which does not end with the punctuation
period (.). To be safe I use the backslash to escape the special meaning of the period (match
a printable charachter. Some would argue that this isn’t necessary. The issue here is to test
your results. The circumflex character states not to match any period; followed by $ to
specifically state no period at the end of the line (or record).
In the second example the expression, '^[^A-S]', states to match from the beginning of a
line any character not in the uppercase character range A thru S. Thus, the characters that
can satisfy this match are lowercase characters, uppercase characters in the range of T thru
Z, numbers, and other characters not in the range of uppercase A thru S.

Consider the example below:
$ grep '^stu0[^2-6]a' /etc/passwd
stu01a:*:501:501:Student Account:/u/students/stu01a:/bin/ksh
stu07a:*:507:507:Student Account:/u/students/stu07a:/bin/ksh
stu08a:*:508:508:Student Account:/u/students/stu08a:/bin/ksh
stu09a:*:509:509:Student Account:/u/students/stu09a:/bin/ksh

This expression states to match all the string stu0 at the beginning of the line, then the fifth
character can not be a digit in the range of 2 thru 6, and the sixth character must be an a.

Page 10

. Match Any Single Character
$ grep '[Uu]...' fortunes
A modem is a baudy house.
A truly wise man never plays leapfrog with a Unicorn.
A woman without a man is like a fish without a bicycle.
An elephant is a mouse with an operating system.
* UNIX was a Trademark of Bell Laboratories.
Any time things appear to going better, you have overlooked something.
Armadillo: Supplying weapons to a Spanish pickle.
E Pluribus UNIX
If at first you don't succeed, give up, don't be a darn fool.
Love the Sea? I dote upon it - from the beach
Man Year: 730 people working feverishly until noon.
Now is the time for all good men to come to the aid of their country.
Nudists are people who wear one-button suits.
Old programmers never die. They just branch to a new address.
The future isn't what it used to be!
I must have slipped a disk; my pack hurts.
Satire doesn't look pretty upon a tombstone.
The rain in Portugal falls mainly in the mountains.
Time is about the stream I go a-fishing in.
You might have mail
Remember, UNIX spelled backwards is XINU.

$ grep ' [Uu]... ' fortunes
* UNIX was a Trademark of Bell Laboratories.
Love the Sea? I dote upon it - from the beach
The future isn't what it used to be!
Satire doesn't look pretty upon a tombstone.
Remember, UNIX spelled backwards is XINU.

In this example we’re illustrating how the period character works. The period states to
match any printable character.

The first example, with the expression ‘[Uu]…’, states to match an uppercase or lowercase
U, followed by three printable characters. This match can occur anywhere on the line. I
have underlined what satisfied the match in the first example.

The second example has the expression ‘ [Uu]… ‘ to states match a space; followed by an
uppercase or lowercase U, followed by three printable characters, then the next character
must be a space. The pattern matches have been underlined in this slide to highlight the
matches. The RegEx specifies space in the beginning and end of the pattern match.

Although these examples are bizarre, notice the power of pattern matching using UNIX
regular expressions. It is important to note how effective pattern matches can be when
specific instructions are provided:

 Match single printable character
 Match RegEx pattern zero or more times
 Match RegEx pattern zero or one time
 Match RegEx pattern one or more times

The ability to use spanning of RegEx patterns is another powerful feature!

Page 11

* Repeat The Expression Zero Or More Times

$ grep ' [Vv][a-z]* ' fortunes
Words are the voice of heart
Life vs death.
Writing free verse is like playing tennis with the net down.

$ grep ' [Vv][a-z]*. ' fortunes
Words are the voice of heart
Life vs. death.
Life vs death.
Writing free verse is like playing tennis with the net down.

This slide illustrates the strength of the asterisk character (*). The interpretation of this
character is to match zero of more occurrences of a pattern.

In the first example, the expression ‘ [Vv][a-z]* ‘, states to match a space, then an
uppercase or lowercase V, then match the the lowercase character range of a thru z that can
occur zero or more times, followed by a space. Notice that three lines match this expression.

However, by slightly modifying the expression to include a period after the asterisk alters
the space.

Life vs. Death satisfies this match because in addition to the previous records because
RegEx [a-z]* matches the s one time followed by the period which matches the criteria of a
printable character which happens to be a period.

Page 12

match a space, p, lowercase vowel occurring one or more times,
followed by a p, two printable characters, followed by a space.

===> egrep ' p[aeiou]+p.. ' fortunes
Line printer paper is strongest at preforations.
Man Year: 730 people working feverishly until noon.
Nudists are people who wear one-button suits.

match a space, g, lowercase vowel, non lowercase vowel, and space

===> egrep ' g[aeiou][^aeiou] ' fortunes

match a space, g, lowercase vowel occurring one or more times,
followed by a non lowercase vowel, two printable characters, followed by a
space

===> egrep ' g[aeiou]+[^aeiou] ' fortunes

Now is the time for all good men to come to the aid of their country.

+ Repeat Previous Expression One Or More Times

2

3

1

This slide illustrates the special interpretation of the '+' character which has the special
meaning to repeat the previous expression one or more times.

In the first example we want to match a space; followed by matching a p. followed by
character matching a lowercase vowel that can occur one or more times; followed by a p;
followed by a space.

In the second example, notice the match achieved with the “+” interpreted match the
previously defined pattern match. The first character is a space; followed by matching a g;
followed by matching a non-lowercase vowel; followed by a space character. However, no
match was satisfied.

In the third example, notice the difference when a '+' is appended to the [aeiou] pattern
match that is defined as match a lowercase vowel that can occur one or more times. Thus, a
match is made with ' good '.

Page 13

? Repeat Previous Expression Zero Or One Time

Match a space, C- can occur one or more times,
followed by a s or S, followed by the string hells.

❶ ===> egrep ' (C-)?[sS]hells ' fortunes
He sells C-Shells by the C-Shore.
She sells sea shells by the sea shore.

Match a space, followed by p, followed by vowel
occurring 1 or more times, followed by a p, followed by
two printable characters, then a space
❷ ===> egrep ' p[aeiou]?p.. ' fortunes
Line printer paper is strongest at preforations.

This example illustrates the use of the question mark which means repeat the previous
expression zero or one time. This question mark is an extended regular expression and
should be used with egrep.

The first example wants to match the expression ' (C-)?[sS]hells ' which states to
match a space. Match two characters C- occurring zero or one time. The next character must
be an uppercase or lowercase S. The remaining characters must be the sting hells; followed
by a space. This is why the words C-Shells and shells satisfies the match. The RegEx
patterns matched are C-shells, Shells, and shells are the pattern defined. If the RegEx is
defined as ' (C-)[sS]hells ', only C-Shells and C-shells would the only strings to satisfy
the match.

In the second example, we want to match the expression ' p[aeiou]?p.. 'which
states match a space character; followed by a p; followed by a lowercase vowel that can
occur zero or one time; followed by a p; followed by two printable characters; followed by
a space. In this example, the word paper satisfies this match.

Page 14

RE Groups & Unions

==> egrep ' with(out) ' fortunes
A woman without a man is like a fish without a bicycle.
==> egrep ' with(out)? ' fortunes
A truly wise man never plays leapfrog with a Unicorn.
A woman without a man is like a fish without a bicycle.
An elephant is a mouse with an operating system.
Writing free verse is like playing tennis with the net down

$ egrep '^Love |^Li[fn]e ' fortunes
Life vs. death.
Life vs death.
Love the Sea? I dote upon it - from the beach
Line printer paper is strongest at preforations.
.

| Union of Regular Expressions

() Grouping of Regular Expressions

The use of parentheses is very powerful for grouping expressions. Especially when we use
the special characters.

In the first example, we’re illustrating how the ? character would work on an expression.
The first expression ' with(out) ' is defined as matching a space character; followed
by the string with. The next three characters is the string out grouped by parentheses. The
final character is a space. This pattern matches the word without. This example illustrates
potential mistakes.

This slide illustrates the effect of using a ? after the grouping of the string out. We’re now
able to match the words with or without.

In the next example we are illustrating the ability of Unions (or logical oring). Notice that
combinations of expressions are being used; better known as a compound regular
expression. The first expression is '^Love ' which is to match the word Love; followed by
a space at the beginning of the line. The second RegEx pattern states match Li at the
beginning of a line; followed by the third character to be a f or a n. The fourth character is
an e; followed by the fifth character being a space at the beginning of the line. In summary,
we’re attempting to match 'Love ', 'Life 'and 'Line ' appearing at the beginning of a
line.

Page 15

Examples of Spanning Characters (1)

{N} Repeat Previous Regular Expression Exactly N Times.

$ egrep ' [^aeiou][aeiou]{2}[^aeiou] ' fortunes
Love the Sea? I dote upon it - from the beach
Now is the time for all good men to come to the aid of their country.
Nudists are people who wear one-button suits.
Old programmers never die. They just branch to a new address.
On a clear disk you can seek forever.
Satire doesn't look pretty upon a tombstone.
No one can feel as helpless as the owner of a sick goldfish.
The rain in Portugal falls mainly in the mountains.
The rain in Spain falls mainly in the plain.

{N} Repeat previous regular expression exactly N times

This slide illustrates the spanning of characters to match the pattern exactly N times.
In this example, were illustrating how to match exactly N times. The RegEx matches a
space character; followed by a non-lowercase vowel; followed by lowercase vowel
occurring exactly two times; followed non-lowercase vowel; followed by a space. The
pattern match will not occur at the beginning or the end of the line. Most of the lines are
obvious. However, why did Sea? and die. satisfy the match?
List below are the shorthand notations for spanning charachters:

Page 16

Examples of Spanning Characters (2)

{N,} Repeat Previous Regular N or More Or Times.

$ egrep " [aeiou][^aeiou]{3,}" fortunes
Words are the voice of heart
A truly wise man never plays leapfrog with a Unicorn.
A woman without a man is like a fish without a bicycle.
* UNIX was a Trademark of Bell Laboratories.
Armadillo: Supplying weapons to a Spanish pickle.
Every program is a part of some other program, and rarely fits.
Writing free verse is like playing tennis with the net down.
Helping others ==> we all benefit
If at first you don't succeed, give up, don't be a darn fool.
Love the Sea? I dote upon it - from the beach
Line printer paper is strongest at preforations.
Now is the time for all good men to come to the aid of their country.
Old programmers never die. They just branch to a new address.
The future isn't what it used to be!
On a clear disk you can seek forever.
No one can feel as helpless as the owner of a sick goldfish.
The rain in Portugal falls mainly in the mountains.
The rain in Spain falls mainly in the plain.
Remember, UNIX spelled backwards is XINU.

{N,} Repeat the previous expression N or more times
This slide illustrates repeating the previous expression N or more times
This example we want to illustrate matching N or more times. The expression defined states
to match a space, followed by a vowel, the next character must be a non lowercase vowel
occurring three or more times.

Page 17

Examples of Spanning Characters (3)

{N,} Repeat Previous Regular N or More Or Times.

$ egrep " [aeiou][^aeiou]{3,} " fortunes
Love the Sea? I dote upon it - from the beach
The future isn't what it used to be!

$ egrep ' [aeiou][^aeiou]{3,}' fortunes
Old programmers never die. They just branch to a new address.
The future isn't what it used to be!

{N,} Repeat the previous expression N or more times
The examples in this slide include:
• First example, match a space; followed by a vowel; followed by a non lowercase vowel

occurring three or more times; followed by a space. It should be obvious this pattern
match can take place in the beginning or ending of a line.

• Second example, match a space; followed by a vowel; followed by a non lowercase
vowel or space occurring three or more times.

Notice the difference between having a space and not having a space in the negation pattern
match [^aeiou]

Page 18

Examples of Spanning Characters

{N,M} Repeat Previous Regular Expression At
Least N Times not to exceed M times.

$ egrep ' X[UNI].$' fortunes

$ egrep ' X[UNI]{1,3}.$' fortunes
Remember, UNIX spelled backwards is_XINU.

{N,M} Repeat the previous expression at least N times; not to exceed M times
This slide illustrates matching a pattern at least N times not to exceed M times. The first
egrep command:
• Match a space; followed by a capital X; followed by a U, N, or I that occurs one time;

followed by any printable character at the end of the line at the ed of the line.
Notice nothing matches.
With the next egrep command:
• Match a space; followed by a capital X; followed by a U, N, or I that occurs at least one

time, not to exceed three times; followed by any printable character at the end of the line.
Notice the difference between the two when we span the U, N, or I up to three times and not
spanning charachters.

Page 19

Common Mistakes

$ egrep 'H|help(less|ing)* ' fortunes
He sells C-Shells by the C-Shore.
Helping others ==> we all benefit.
No one can feel as helpless as the owner of a sick goldfish.

$ egrep '(H|h)elp(less|ing)* ' fortunes
Helping others ==> we all benefit.
No one can feel as helpless as the owner of a sick goldfish.

$ egrep '[Hh]elp(less|ing)* ' fortunes
Helping others ==> we all benefit.
No one can feel as helpless as the owner of a sick goldfish.

This slide illustrates mistakes that can be refined and improve upon the expression.

We’re attempting to match the words Help, help, Helpless, helpless, Helping, or helping.
Our first attempt was trying the compound expression 'H|help(less|ing)* ' that:
• Match H or help anywhere on a line
• Followed by the character string less or ing that can occur zero or more times

“He” was not a match we were looking for!

The second attempt works better since ' (H|h)elp(less|ing)* ' performs a parentheses
grouping to match an H or h; followed by the string elp, and the suffix less or ing that can
occur zero or more times. This pattern match is much better than the first works.

However, there is debate to, whether or not, the third expression ' [Hh]elp(less|ing)* ' is
be better. It may be better since it is more succinct:
• Match an H or h followed by
• the character string elp; followed by
• the character string less or ing that can occur zero or more times

This brings up to the process of fine tuning or debugging pattern matches:
• Test: Ensure Regular Expressions Work As Expected!
• Evaluate Results With The Following Guidelines:

– *Hits That Should Be Misses
– Hits
– Misses
– *Misses That Should Be Hits

• Perfect Your Descriptions: by working opposite ends
–Working at Opposite Ends. Eliminate:

»"Hits That Should Be Misses"
»"Misses That Should Be Hits."!

Remember to archive regular expressions: They Could Be Reusable!

Page 20

sed Command

Description

stream editor (non-interactive and interactive “-i”)

Synopsis

sed [-n] [-e script] [-f sfilename] [filename]...

Examples
sed 'one editing command’ [inputfile]
sed -e '1st editing command' -e '2nd editing command’ [inputfile]
sed -f scriptfilename [inputfile]
sed -i[SUFFIX] 's/sourcestring/replacementstring/' filename

Syntax For sed commands (directives)
[address,[address]]command[arguments]

The sed command is a very powerful streamline editor. It began as a non-interactive editor.
However, it now includes an interactive feature.

This slide highlights the command synopsis. The examples provided demonstrate
completing edit changes on matching lines and outputting the remaining lines without
modification.

You can have one edit directive or multiple edit directives. Just remember to use the -e
option with multiple edit directives.

Edit directives passed by reading a file containing edit directives.

It should also be noted, the –i option is known as the in-place editing option. It allows in-
place editing of files creating a temporary output file in the background. Afterwards, the
original file is replaced by the temporary file.

The in-place option has two available options:
 -i[SUFFIX]
 --in-place[=SUFFIX]

If a SUFFIX is supplied, a backup copy of the original made with the suffix appended to the
original filename. IMPORTANT NOTE: When using the in-place editing option, you
must specify a file for input; as you cannot pipe standard output to a sed command. If you
need to update multiple files, then embed the sed command in a loop (for-loop or while-
loop)

Notations combined with commands have two methods. One may specify these editing
commands on a sed command line; or you can place these editing commands in a ASCII
text file.

Page 21

sed Command

Pattern
Space

SEDInput
Data
Lines

Standard
Output

Editing
Commands

Read input line
Into the pattern
Space.

Compare the line
address in the pattern
space to the address
on the editing commands

If the command selects
the line in the pattern
space do the editing
command

Write the line in the
Pattern space to
standard output

1. 2. 3. 4.

Loop until end-of-file

This slide paints the image of how the sed command functions as a line editor.

Edit directives passed by reading a file containing edit directives. The sed editing
commands are almost identical to commands (directives) used by ed.

Edits can occur referencing address lines or pattern-match notations.

The sed command is a very powerful editing tool with a wide variety editing command
capabilities to modify data streams in many different ways.

The sed process involves four step, highlighted in slide, until the end-of-file is reached.

Page 22

SED with Global Substitutions

$ sed -n "1,$s/program/PROGRAM/p" fortunes
Every PROGRAM is a part of some other program, and rarely fits.
Old PROGRAM mers never die. They just branch to a new address.

$ sed -n "1,$s/program/PROGRAM/gp" fortunes
Every PROGRAM is a part of some other PROGRAM, and rarely fits.
Old PROGRAMmers never die. They just branch to a new address.

This slide illustrates how we can make text edit changes quickly without invoking an
interactive text editor.

The substitution mechanism works on the concept of:

/ regular expression/substitution string/

In the first example, we’re substituting the string program with PROGRAM. Notice the first
line will only substitute the first match.

If we want to substitute all occurrences on the line, we must include a g directive after the
substitution directing to perform a global substitution of all occurrences qfor each record
process.

The -n option should be and the p directive should be explained. This -n flag tells sed not to
print to standard output. In essence no lines are to be printed. However, the p directive tells
sed to print the lines it did process.

Page 23

SED – Replace Tabs with Vertical Bar Globally
Display the contents Autos file
$ cat -tve Autos

Accura^IIntegra^I1987^I35987$

Dodge^IAries^I1982^I1035987$

Jeep^ICherokee^I2021^I48000$

Chevy^IMalibu^I2004^I35999$

Ford^IMustang^I2015^I120125$

Mercury^IMonarch^I2020^I55987$

Plymouth^IShadow^I1994^I125888$

Nissan^IMaxima^I1994^I125888$

Subaru^IOutback^I2023^I5209$

Toyota^IRav4^I2025^I467$

Substitute globally tab characters with the pipe (vertical bar)
$ sed 's:\t:|:g' Autos

Accura|Integra|1987|35987

Dodge|Aries|1982|1035987

Jeep|Cherokee|2021|48000

Chevy|Malibu|2004|35999

Ford|Mustang|2015|120125

Mercury|Monarch|2020|55987

Plymouth|Shadow|1994|125888

Nissan|Maxima|1994|125888

Subaru|Outback|2023|5209

Toyota|Rav4|2025|467

The Autos file contains four fields for each record:

1. Car Manufacturer
2. Model
3. Year
4. Mileage

The cat command uses 3 options:

-v: show non-printing characters
-t: display TAB characters as ^I
-e: display $ at end of each line

Thus notice the tab ^I output from the cat command.

The sed command is searching for the TAB character with a vertical bar (pipe sign).

Page 24

SED – Insert/Change/Append Text
== Display contents of Autos with line numbers ==
$ nl Autos2

1 Accura Integra 1987 35987
2 Dodge Aries 1982 1035987
3 Jeep Cherokee 2021 48000
4 Chevy Malibu 2004 35999
5 Ford Mustang 2015 120125
6 Mercury Monarch 2020 55987

== Contents of sedscript file ==
$ cat sedscript
/Accura/iInsert Above Line 1
/Chevy/cReplacing Chevy record (record 4)
/Ford/aAppending after line 5

== Results of stream edit ==
$ sed -f sedscript Autos2 | nl

1 Insert Above Line 1
2 Accura Integra 1987 35987
3 Dodge Aries 1982 1035987
4 Jeep Cherokee 2021 48000
5 Replacing Chevy record (record 4)
6 Ford Mustang 2015 120125
7 Appending after line 5
8 Mercury Monarch 2020 55987

Notice the Autos2 file has 6 records. It is helps displaying the records with line numbers.
The field separator for each record is the tab character.

The sed script has the following instructions:
 Insert the text "Insert Above Line 1" above the Acura record.
 Replace the Chevy record with the text "Replacing Chevy record (record 4)" on

line 4.
 Append the text "Appending after line 5" below the Ford record

The command sed -f sedscript Autos2 produces the following results illustrated
in the slide.

Page 25

Cryptic RE Example

$ sed 's/\([0-9][0-9]*\)\.\{5,\}\([0-9][0-9]\)/\1-\2/' numbers
Parameter \1 Parameter \2

$ cat numbers

1..........5

5.........10

10........20

100......200

$ sed 's/\([0-9][0-9]*\)\.\{5,\}\([0-9][0-9]\)/\1-\2/' numbers

1..........5

5-10

10-20

100-200

Now getting back to the terse beginning I introduced at the beginning.

Sed supports most of the regular expression grep does. However, parentheses are used to
establish.

With sed, we can group pattern matches with parentheses to create positional parameters.
Notice that the parentheses are preceded with a backslash. This is necessary to define the
positional parameters. These parameters are grouped as follows:

 First positional (\1) field matches a digit; followed by a period that can occur 5 or
more times; followed by a digit can occur zero or more times; followed second
positional (\2) parameter is matching a digit; followed by a second digit.

The first redord

In the substitution, we will replace the periods with a dash. Notice the results from
executing the command (based upon the contents of the numbers file. The first line failed
because we didn’t the * special character when establishing a second positional parameter.
The second expression only satisfies the match for a two-digit value! A better expression
would be:

sed 's/\([0-9][0-9]*\)\.\{5,\}\([0-9][0-9]*\)/\1-\2/' numbers

producing:
5-10
10-20
100-200

New GNU sed command may have difficulty with the + character for the shorthand notation
matching the regular expression 1 or more times.

Page 26

Why Should I Care About Regular Expressions?

$ cat sample
...
print("ENTER YOUR NAME: ");
...
printf("CAN'T OPEN %s\n", file);
...
printf ("OPENING FILE: %s\n", filename);
...
printf ("CAN'T OPEN FILE: %s\n", filename);
...
printf ("CAN'T OPEN FILE: %s\n","/usr/data");
...
fprint(stderr,"CAN'T OPEN %s\n",errfile);
...
value=two;
...

$ sed -n '1,$s/\(.*\)printf.*["]\(CAN.T OPEN.*\)",\(.*\)/\1fprintf(stderr, “\2", \3/p' sample

fprintf(stderr, "CAN'T OPEN %s\n", file);

fprintf(stderr, "CAN'T OPEN FILE: %s\n", filename);

fprintf(stderr, "CAN'T OPEN FILE: %s\n", "/usr/data");

\1 \2 \3

Most people make think regular expressions are useless. However, in the eighties knowing
this skill paid big dividends.

Many COBOL source code files could have syntax changes done through filtering. I
remember filtering 1000 program files in three days with very good results.

In the scenario listed here. A programmer made the mistake not to use fprintf() function call
to include file descriptors. Instead, he would use printf() that would always print to standard
out.

This sed program illustrates how we can match can’t open file messages and replace:
1. Replace printf function call with fprintf.
2. Create positional parameter 1 that include all the characters leading up to printf.
3. Store "Can’t Open" and any additional character just before the double quote and store

the string in positional parameter 2.
4. All characters after the double quote are stored in positional parameter 3.

In the replacement string involved the following instructions:
1. Write the character string stored in positional parameter 1.
2. Write the character string "fprintf (stderr, ".
3. Write the character string stored in positional parameter 2.
4. Write a double quote; followed by a comma and space character
5. Write the character string stored in positional parameter 3.

This sed command took 25 minutes to write. Think of the time savings when it was
estimated 900+ programs needed to be modified.

Page 27

In-place substiution

$ cat df-data
/dev/mapper/ol_vbox-root 3080192 166152 2914040 6% /
/dev/mapper/ol_vbox-usr 10420224 5813800 4606424 56% /usr
/dev/mapper/ol_vbox-tmp 2031616 47324 1984292 3% /tmp
/dev/mapper/ol_vbox-local 46063616 396304 45667312 1% /local
/dev/mapper/ol_vbox-home 5177344 322688 4854656 7% /home
/dev/sda1 2031616 770948 1260668 38% /boot
/dev/mapper/ol_vbox-opt 15663104 159064 15504040 2% /opt
/dev/mapper/ol_vbox-var 5177344 1677068 3500276 33% /var

$ sed -ri.$(date "+%Y%m%d_%H%M%S_")$$'s: +:|:g' df-data
$ ls df-data*
df-data df-data.20250403_141153_133139
$ cat df-data
/dev/mapper/ol_vbox-root|3080192|166152|2914040|6%|/
/dev/mapper/ol_vbox-usr|10420224|5813800|4606424|56%|/usr
/dev/mapper/ol_vbox-tmp|2031616|47324|1984292|3%|/tmp
/dev/mapper/ol_vbox-local|46063616|396304|45667312|1%|/local
/dev/mapper/ol_vbox-home|5177344|322688|4854656|7%|/home
/dev/sda1|2031616|770948|1260668|38%|/boot
/dev/mapper/ol_vbox-opt|15663104|159064|15504040|2%|/opt
/dev/mapper/ol_vbox-var|5177344|1677068|3500276|33%|/var

$ cat df-data
/dev/mapper/ol_vbox-root 3080192 166152 2914040 6% /
/dev/mapper/ol_vbox-usr 10420224 5813800 4606424 56% /usr
/dev/mapper/ol_vbox-tmp 2031616 47324 1984292 3% /tmp
/dev/mapper/ol_vbox-local 46063616 396304 45667312 1% /local
/dev/mapper/ol_vbox-home 5177344 322688 4854656 7% /home
/dev/sda1 2031616 770948 1260668 38% /boot
/dev/mapper/ol_vbox-opt 15663104 159064 15504040 2% /opt
/dev/mapper/ol_vbox-var 5177344 1677068 3500276 33% /var

$ sed -ri.$(date "+%Y%m%d_%H%M%S_")$$'s: +:|:g' df-data
$ ls df-data*
df-data df-data.20250403_141153_133139
$ cat df-data
/dev/mapper/ol_vbox-root|3080192|166152|2914040|6%|/
/dev/mapper/ol_vbox-usr|10420224|5813800|4606424|56%|/usr
/dev/mapper/ol_vbox-tmp|2031616|47324|1984292|3%|/tmp
/dev/mapper/ol_vbox-local|46063616|396304|45667312|1%|/local
/dev/mapper/ol_vbox-home|5177344|322688|4854656|7%|/home
/dev/sda1|2031616|770948|1260668|38%|/boot
/dev/mapper/ol_vbox-opt|15663104|159064|15504040|2%|/opt
/dev/mapper/ol_vbox-var|5177344|1677068|3500276|33%|/var

Prior to the in-place editing feature:
1. First make a backup copy of the file or files.
2. Perform the the sed edits needed and redirect the output to new files
3. Replace the original files with their corresponding new files

With the GNU sed with in-place edits:
1. The edits are stored in a temporary file.
2. A backup file is created when an suffix extension is provided
3. After the edit is complete, overwrite the file with the temporary file.

In this example, of in-place substitution. This feature was made available with the GNU
distribution of sed. The /RegEx/ReplacementString/ is 's: +:|:' is stating to replace
all spaces with a pipe sign (vertical bar).

Notice the contents of root-dirlist before the edit and the contents after the edit.

The SUFFIX is .$(date "+%Y%m%d_%H%M%S_")$$ translates to:

.YYYYMMDD_HHMMSS_PID

PID represents $$ is a special parameter being the value current process ID. Notice the
extension

Page 28

Substituting with ex directives

/dev/mapper/ol_vbox-root 3080192 166152 2914040 6% /
/dev/mapper/ol_vbox-usr 10420224 5813800 4606424 56% /usr
/dev/mapper/ol_vbox-tmp 2031616 47324 1984292 3% /tmp
/dev/mapper/ol_vbox-addon 41877504 325020 41552484 1% /addon
/dev/mapper/ol_vbox-local 46063616 396304 45667312 1% /local
/dev/mapper/ol_vbox-home 5177344 322688 4854656 7% /home
/dev/sda1 2031616 770948 1260668 38% /boot
/dev/mapper/ol_vbox-opt 15663104 159072 15504032 2% /opt
/dev/mapper/ol_vbox-var 5177344 1676944 3500400 33% /var
~
:1,$s: \{1,\}:|:g

/dev/mapper/ol_vbox-root 3080192 166152 2914040 6% /
/dev/mapper/ol_vbox-usr 10420224 5813800 4606424 56% /usr
/dev/mapper/ol_vbox-tmp 2031616 47324 1984292 3% /tmp
/dev/mapper/ol_vbox-addon 41877504 325020 41552484 1% /addon
/dev/mapper/ol_vbox-local 46063616 396304 45667312 1% /local
/dev/mapper/ol_vbox-home 5177344 322688 4854656 7% /home
/dev/sda1 2031616 770948 1260668 38% /boot
/dev/mapper/ol_vbox-opt 15663104 159072 15504032 2% /opt
/dev/mapper/ol_vbox-var 5177344 1676944 3500400 33% /var
~
:1,$s: \{1,\}:|:g

/dev/mapper/ol_vbox-root|3080192|166152|2914040|6%|/
/dev/mapper/ol_vbox-usr|10420224|5813800|4606424|56%|/usr
/dev/mapper/ol_vbox-tmp|2031616|47324|1984292|3%|/tmp
/dev/mapper/ol_vbox-addon|41877504|325020|41552484|1%|/addon
/dev/mapper/ol_vbox-local|46063616|396304|45667312|1%|/local
/dev/mapper/ol_vbox-home|5177344|322688|4854656|7%|/home
/dev/sda1|2031616|770948|1260668|38%|/boot
/dev/mapper/ol_vbox-opt|15663104|159072|15504032|2%|/opt
/dev/mapper/ol_vbox-var|5177344|1676944|3500400|33%|/var
~
45 substitutions on 9 lines

/dev/mapper/ol_vbox-root|3080192|166152|2914040|6%|/
/dev/mapper/ol_vbox-usr|10420224|5813800|4606424|56%|/usr
/dev/mapper/ol_vbox-tmp|2031616|47324|1984292|3%|/tmp
/dev/mapper/ol_vbox-addon|41877504|325020|41552484|1%|/addon
/dev/mapper/ol_vbox-local|46063616|396304|45667312|1%|/local
/dev/mapper/ol_vbox-home|5177344|322688|4854656|7%|/home
/dev/sda1|2031616|770948|1260668|38%|/boot
/dev/mapper/ol_vbox-opt|15663104|159072|15504032|2%|/opt
/dev/mapper/ol_vbox-var|5177344|1676944|3500400|33%|/var
~
45 substitutions on 9 lines

Results of ex directive edit:

This example illustrates how to make text edits using the vi ex directive feature. This is
drastically faster than the manual edits.

The ex directive '1,$s: \{1,\ }:|:g' states:

1. Match a space that can occur 1 or more times and replace it with a single vertical bar
(or pipe character) globally.

Page 29

AWK

Output Stream

AWK
Program

Input Stream
AWK Language Processor

(COMMAND)

Description
pattern scanning and processing language

Synopsis:
awk [-Fcharacter] 'pattern {action}' [file...]

- or -
awk [-Fcharacter] -f scriptfile [file...]

Awk is another useful command for text filtering. The nice part is it includes useful
programming constructs. Like grep, it's a text filter command.

AWK Program is the series of ' pattern {action} ' statements. The AWK language
Processor is the command itself (awk, gawk, and nawk). The input/output Streams are
ASCII Text Records. The text can be treated as strings, numeric quantities, individual
characters fields.

It should be patterns can include relation expressions in addition to regular expressions.

Page 30

AWK Process Continued

BEGIN

END

1

INPUT

1st routine executed before any
input is read

2nd routine(main input loop);
executed for each input line.
Can have multiple pattern-
action statements

3rd routine executed after all input is
read.

2

3

Since awk can be very intimidating to those first learning this program. It’s important to
note that is method of processing data is rather simple. Before any data is processed, awk
will process an existing BEGIN statement. Then it will process text for the files it's
instructed to process. The lines of data read will be compared to each pattern action
statement defined. After all the data is processed, awk will then process an END statement.

Page 31

Record/Field Parsing

This
$1

separated
$5

is
$2

record
$4

a
$3

by
$6

spaces
$7

$0

• $0 variable is the entire record

• Nonzero varables is the positional field

Awk splits input stream into records based upon the value of the the built-in variable for the
record separator (RS). The default is generally the newline (\n).

Then it splits input stream into fields based upon the value of the the built-in variable for the
field separator (FS). The default value is white-space (combination of spaces and tabs).

This slide illustrates the concept of the entire record; and the fields that make up that record.

Page 32

Awk Pattern Selection Method

relational expression {statement(s)}
• Statement(s) executed for each input line where the expression is true.

/regular expression/ {statement(s)}
• Statement(s) executed for each input line where the the input line satisfies

string matched by the regular expression.

compound pattern {statement(s)}
• Compound pattern combines expressions with the boolean relations for:

&& logical and
|| logical or
! logical not

• Parentheses are also used for grouping the expressions.
• Action statements are executed for the input lines where the compound

pattern is true.

pattern1 , pattern2 {statement(s)}
• Pattern range matches those records between pattern1 & pattern2. In other

words, actions will be performed on those records once the first input line
satisfies pattern1 until a successive record matches pattern2.

Although awk can not be covered in complete detail, this slide is here for informational
purposes to let you know the various pattern statements that awk supports.

Relational operators are supported such as the if statement. The more common pattern
statement is the regular expression statement.

Awk does support compound pattern expressions. These compound expressions can be a
combination of regular expressions with relational expressions.

We pattern1, pattern2 expressions are very interesting when wanting to retrieve data within
a certain range.

Page 33

/regular expression/ {statement(s)}

awk -F: ' /ksh$/ { print $1 } ' /etc/passwd

/regular expression/ {statement(s)}

awk -F"|" ' $6 == "CA" && $5 ~ /San Jose/ ' phone.lst

compound pattern {statement(s)}

pattern action

The slide illustrates a regular expression example and a compound expression example that
uses a regular expression.

Before we explain the two examples, it's necessary to discuss what to do when the field
separator is not white spaces (space(s) or tab(s)). The -F option with the colon(:) indicates
our field separator is to be colon.

In the first regular expression, we want to match ksh at the end of each password record.
The action statement says print positional filed 1 ($1), which is the username or login name
field of the password record. This example is useful for finding those user accounts
that have /bin/ksh as its startup program.

In the second example, the field separator is the UNIX pipe character(|). The pattern
selection:

 Determines if field six equals (==) the character string "CA” and

 Determines if field five is like (~) "San Jose”

These comparisons are done with records read from the phone.lst file.

Page 34

pattern1,patern2 {statement(s)}

accountant
Adam Brick
1234 Wall Ave.
New York, NY 01021

doctor - ophthalmologist
Dr. Seizure
1111 Where St.
Murray Hill, NJ 00821

lawyer
Adam Collects
1234 Liability Ave.
Sheister City, NJ 10821

doctor - general practitioner
Dr. Susan Knows
1314 Checkup Street.
Kingston, NY 10021

accountant
Adam Brick
1234 Wall Ave.
New York, NY 01021

doctor - ophthalmologist
Dr. Seizure
1111 Where St.
Murray Hill, NJ 00821

lawyer
Adam Collects
1234 Liability Ave.
Sheister City, NJ 10821

doctor - general practitioner
Dr. Susan Knows
1314 Checkup Street.
Kingston, NY 10021

$ awk ' /^doctor/, /^$/ ' list
doctor - ophthalmologist
Dr. Seizure
1111 Where St.
Murray Hill, NJ 00821

doctor - general practitioner
Dr. Susan Knows
1314 Checkup Street.
Kingston, NY 10021

$ awk ' /^doctor/, /^$/ ' list
doctor - ophthalmologist
Dr. Seizure
1111 Where St.
Murray Hill, NJ 00821

doctor - general practitioner
Dr. Susan Knows
1314 Checkup Street.
Kingston, NY 10021

This example illustrates the pattern1, pattern2 matching capability of awk. A brief contents
of the text data is on the left. The program executed and the output is listed to the right.

The program wants to start match a line that starts with doctor at the beginning of a line up
to an include an immediate newline. Notice the two records that match this pattern.

An important note about awk regard pattern-action statements: When no action is specified,
the entire record is printed. If no pattern statement, then all the records are printed.

Page 35

Manipulating Text via AWK

== Print the user name for those accounts using ksh
==
$ awk -F: ' /ksh$/ { print $1 } ' /etc/passwd
stu01b
stu02b
stu03b
$
== Print the user name and shells ==
$ awk -F: ' /sh$/ { print $1 ": " $7 } ' /etc/passwd
root: /bin/bash
gstafford: /bin/bash
stu01a: /bin/bash
stu02a: /bin/bash
stu03a: /bin/bash
stu01b: /bin/ksh
stu02b: /bin/ksh
stu03b: /bin/ksh
stu01c: /bin/csh
stu02c: /bin/csh
stu03c: /bin/csh

== Print the user name for those accounts using ksh
==
$ awk -F: ' /ksh$/ { print $1 } ' /etc/passwd
stu01b
stu02b
stu03b
$
== Print the user name and shells ==
$ awk -F: ' /sh$/ { print $1 ": " $7 } ' /etc/passwd
root: /bin/bash
gstafford: /bin/bash
stu01a: /bin/bash
stu02a: /bin/bash
stu03a: /bin/bash
stu01b: /bin/ksh
stu02b: /bin/ksh
stu03b: /bin/ksh
stu01c: /bin/csh
stu02c: /bin/csh
stu03c: /bin/csh

The ability to pattern match text then format data output is an appealing capability of the
awk command.

In the first example. Match those records that use passwd records ending in ksh. For those
records that match, print the user name that is the first field.

The second example, match those records that end in sh. For the matching rccords that
match, print username, colon (:) and a space the the login shell.

Page 36

AWK – field separator trick

== cat the numbers file ==
nl -w2 numbers
1 1..........5
2 5.........10
3 10........20
4 100......200
== print the nuber of fields for each line ==
$ awk -F. ' { printf "%d: %2d\n", NR,NF } ' numbers
Record 1: 11
Record 2: 10
Record 3: 9
Record 4: 7
== Now use a formatted print (printf) ==
$ awk -F. '{printf "%3d - %3d\n",$1,$(NF)}' numbers
1 - 5
5 - 10
10 - 20
100 - 200

== cat the numbers file ==
nl -w2 numbers
1 1..........5
2 5.........10
3 10........20
4 100......200
== print the nuber of fields for each line ==
$ awk -F. ' { printf "%d: %2d\n", NR,NF } ' numbers
Record 1: 11
Record 2: 10
Record 3: 9
Record 4: 7
== Now use a formatted print (printf) ==
$ awk -F. '{printf "%3d - %3d\n",$1,$(NF)}' numbers
1 - 5
5 - 10
10 - 20
100 - 200

This slide illustrates that using regular expressions are not always necessary.

-F. stipulates the period is the field separator.

The awk command, awk -F. ' { printf "Record %d: %2d\n", NR,NF } ' numbers yields:
 Record 1: 11
 Record 2: 10
 Record 3: 9
 Record 4: 7

NR is the record of the current record being processed. NF is the number of fields of the
current record being processed.

The command: awk -F. ' { printf %3d-%3dn, $1,$(NF) } ' numbers
yields:

1 - 5
5 - 10

10 - 20
100 - 200

This awk command uses the printf command to print the first and last field that are integer
numbers. The integer number will have a width of 3 characters. A string, ‘ – ‘, is printed
between the digits.

Page 37

AWK – RegEx 1 or more times

$ cat df-awkex
df -t xfs | awk ' NR > 1 {

gsub(/ +/, "|", $0)
print

} '
$

$ sh df-awkex
/dev/mapper/ol_vbox-root|3080192|166152|2914040|6%|/
/dev/mapper/ol_vbox-usr|10420224|5817888|4602336|56%|/usr
/dev/mapper/ol_vbox-tmp|2031616|47324|1984292|3%|/tmp
/dev/mapper/ol_vbox-addon|41877504|325020|41552484|1%|/addon
/dev/mapper/ol_vbox-local|46063616|396352|45667264|1%|/local
/dev/mapper/ol_vbox-home|5177344|322732|4854612|7%|/home
/dev/sda1|2031616|732384|1299232|37%|/boot
/dev/mapper/ol_vbox-opt|15663104|159108|15503996|2%|/opt
/dev/mapper/ol_vbox-var|5177344|1726580|3450764|34%|/var

$ cat df-awkex
df -t xfs | awk ' NR > 1 {

gsub(/ +/, "|", $0)
print

} '
$

$ sh df-awkex
/dev/mapper/ol_vbox-root|3080192|166152|2914040|6%|/
/dev/mapper/ol_vbox-usr|10420224|5817888|4602336|56%|/usr
/dev/mapper/ol_vbox-tmp|2031616|47324|1984292|3%|/tmp
/dev/mapper/ol_vbox-addon|41877504|325020|41552484|1%|/addon
/dev/mapper/ol_vbox-local|46063616|396352|45667264|1%|/local
/dev/mapper/ol_vbox-home|5177344|322732|4854612|7%|/home
/dev/sda1|2031616|732384|1299232|37%|/boot
/dev/mapper/ol_vbox-opt|15663104|159108|15503996|2%|/opt
/dev/mapper/ol_vbox-var|5177344|1726580|3450764|34%|/var

In this script:

The df -t xfs command generates df output that is piped to the awk command. The gsub
function has the following synopsis: gsub(regex, sub, string). If a string, the
third parameter, is optional. If omitted, then $0 is used.

The gsub function in the slide has a regular expression defined match a space that occurs 1
or more times and replace it with the vertical bar.

An important note about awk regard pattern-action statements: When no action is specified,
the entire record is printed. If no pattern statement, then all the records are printed. In
addition, the pattern NR > 1 is a relational expression. The purpose of this e pression is to
skip the of the df command. The gsub function will simply replace oe or spaces with a
single vertical bar.

Page 38

swapInt.c in-place edit

$ cat swapInt.c
// C Program to Swap Two Numbers using a Temporary Variable
//
#include <stdio.h>
int main() {

int a = 5, b = 10, temp;
printf("a = %d, b = %d\n", a, b);
// Swapping values of a and b
temp = a; a = b; b = temp;

printf("a = %d, b = %d\n", a, b);
return 0;

}

$ cat swapsed
s: a and b: firstInt and secondInt:
s:(["])a([,;]):\1firstInt\2:g
s:(["])b([,;)]):\1secondInt\2:g
/^#include <stdio.h>/i\
// GMS 2025-04-22 - changes "a" to firstInt and "b" to secondInt\
//

$ sed -i$(date "+.%Y%m%d_%H%M%S") -rf swapsed swapInt.c

$ ls swapInt.c*
swapInt.c swapInt.c.20250409_201339
$

$ cat swapInt.c
// C Program to Swap Two Numbers using a Temporary Variable
//
#include <stdio.h>
int main() {

int a = 5, b = 10, temp;
printf("a = %d, b = %d\n", a, b);
// Swapping values of a and b
temp = a; a = b; b = temp;

printf("a = %d, b = %d\n", a, b);
return 0;

}

$ cat swapsed
s: a and b: firstInt and secondInt:
s:(["])a([,;]):\1firstInt\2:g
s:(["])b([,;)]):\1secondInt\2:g
/^#include <stdio.h>/i\
// GMS 2025-04-22 - changes "a" to firstInt and "b" to secondInt\
//

$ sed -i$(date "+.%Y%m%d_%H%M%S") -rf swapsed swapInt.c

$ ls swapInt.c*
swapInt.c swapInt.c.20250409_201339
$

The results of the sed edits is displayed below:

// C Program to Swap Two Numbers using firstInt Temporary Variable
//
// GMS 2025-04-22 - changes "a" to firstInt and "b" to secondInt
//
#include <stdio.h>
int main() {

int firstInt = 5, secondInt = 10, temp;

printf("firstInt = %d, secondInt = %d\n", firstInt, secondInt);
// Swapping values of firstInt and secondInt
temp = firstInt; firstInt = secondInt; secondInt = temp;

printf("firstInt = %d, secondInt = %d\n", firstInt, secondInt);
return 0;

}

The swapsed file has 4 edits:
 The first substitution will relace a and b variables with firstInt and secondInt in the

comment line.
 Establish positional parameter with all characters preceding a; and all the characters after

a.
 Establish positional parameter with all characters preceding b; and all the characters after

b.
 Insert the comments regarding the code change above the include statement.

The in-place substitution -i$(date "+.%Y%m%d_%H%M%S") creates a backup file with
the suffix .YYYYMMDD_HHMMSS appended to current filename.

Page 39

Properly set a csv format file

$ head -5 EdAwards.csv
Toastmasters International -Education Awards,,,,
Education Program,Completion Date,Club,,
Engaging Humor 2 (EH2),"October 31, 2024",Holy City Toastmasters,,
Engaging Humor 1 (EH1),"October 24, 2024",Holy City Toastmasters,,
Strategic Relationships 2 (SR2),"November 09, 2023",Daybreak Club,,

$ awk ' { printf "%1d: %s\n", NR,$0 } ' EdAwardsFilter’
1: 3,$ s/,/|/1 # Replace the 1st comma occurrence
2: 3,$ s/,/|/2 # Replace the 2nd comma occurrence
3: 3,$ s/,/|/2 # Replace the 2nd comma occurrence
4: 3,$ s/"//g # Globally remove the double quotes
5: 3,$ s/ *[(]/|/g # Globally replace ' *(' with '|'
6: 3,$ s/[)]//g # Globally replace ')' with '|'

$ sed -f EdAwardsFilter f1
Toastmasters International -Education Awards,,,,
Education Program,Completion Date,Club,,
Engaging Humor 2|EH2|October 31, 2024|Holy City Toastmasters|,
Engaging Humor 1|EH1|October 24, 2024|Holy City Toastmasters|,
Strategic Relationships 2|SR2|November 09, 2023|Daybreak Club|,

$ head -5 EdAwards.csv
Toastmasters International -Education Awards,,,,
Education Program,Completion Date,Club,,
Engaging Humor 2 (EH2),"October 31, 2024",Holy City Toastmasters,,
Engaging Humor 1 (EH1),"October 24, 2024",Holy City Toastmasters,,
Strategic Relationships 2 (SR2),"November 09, 2023",Daybreak Club,,

$ awk ' { printf "%1d: %s\n", NR,$0 } ' EdAwardsFilter’
1: 3,$ s/,/|/1 # Replace the 1st comma occurrence
2: 3,$ s/,/|/2 # Replace the 2nd comma occurrence
3: 3,$ s/,/|/2 # Replace the 2nd comma occurrence
4: 3,$ s/"//g # Globally remove the double quotes
5: 3,$ s/ *[(]/|/g # Globally replace ' *(' with '|'
6: 3,$ s/[)]//g # Globally replace ')' with '|'

$ sed -f EdAwardsFilter f1
Toastmasters International -Education Awards,,,,
Education Program,Completion Date,Club,,
Engaging Humor 2|EH2|October 31, 2024|Holy City Toastmasters|,
Engaging Humor 1|EH1|October 24, 2024|Holy City Toastmasters|,
Strategic Relationships 2|SR2|November 09, 2023|Daybreak Club|,

Another view of the sed command synopsis is:

Command Synopsis: sed 's/old/new/[flags]' [input-file]

The sed flags can be any of the following:

g Global substitution
1,2... Substitute the nth occurrence
p Print only the substituted line
w Write only the substituted line to a file
I Ignore case while searching
e Substitute and execute in the command line

This slide illustrates replacing (or substituting) the nth occurrence.

The substitution process has the following progression:
 Replace the 1st comma with a pipe(|). The 2nd comma is now the 1st; and the 3rd comma

now becomes the 2nd.
 Replace the 2nd comma with a pipe(|). The 2nd comma is now the 1st; and the 3rd comma

now becomes the 2nd.
 Replace the 2nd comma with a pipe(|). The 2nd comma is now the 1st; and the 3rd comma

now becomes the 2nd.
 Globally remove the double quotes.
 Globally replace ' *[(]' with '|'
 Globally replace '[)]' with '|'

Page 40

Club Grep Count

$ cat EdAwardsGrepCnt2
IFS=$'\n'
for Club in $(awk -F"|" ' { print $4 } ' $1 | sort -u)
do

echo "$(grep -c $Club $1): $Club"
done | awk -F: ' { printf "%3d:%s\n", $1, $2 } ' |
sort -t: +0nr -1 | tee CountAwards.$$ | less

$ sh EdTallyByAwards6 EdAwards.fnl
23: Spawar Systems Center Club
20: Lowcountry Toastmasters
19: Daybreak Club
19: Trolley Talkers Club
13: Charleston Classics Toastmasters Club
13: Dolphin Club
9: 21st Century Toastmasters
9: Free Spirits Toastmasters Club
8: Holy City Toastmasters
8: Leaders Of Leesburg
8: Monday Munchers
7: Pleasant Speakers Toastmasters Club
6: Chat & Chew

.

.

$ cat EdAwardsGrepCnt2
IFS=$'\n'
for Club in $(awk -F"|" ' { print $4 } ' $1 | sort -u)
do

echo "$(grep -c $Club $1): $Club"
done | awk -F: ' { printf "%3d:%s\n", $1, $2 } ' |
sort -t: +0nr -1 | tee CountAwards.$$ | less

$ sh EdTallyByAwards6 EdAwards.fnl
23: Spawar Systems Center Club
20: Lowcountry Toastmasters
19: Daybreak Club
19: Trolley Talkers Club
13: Charleston Classics Toastmasters Club
13: Dolphin Club
9: 21st Century Toastmasters
9: Free Spirits Toastmasters Club
8: Holy City Toastmasters
8: Leaders Of Leesburg
8: Monday Munchers
7: Pleasant Speakers Toastmasters Club
6: Chat & Chew

.

.

This slide illustrates the power of counting records with the grep command.

The IFS=$'\n’ is critical and required if we’re have fields with spaces.

In the four-loop Club will be assigned the value of a club name for each record passed. The
output from the awk command is piped to sort to generate a unique list (avoiding
duplicates).

The command, $(grep -c $Club $1),will tabulate the number of records for the
club.

The command, echo "$(grep -c $Club $1): $Club", will print the club count,
a colon (:) character, a space, and the name of the club. The output is then piped to the awk
command. The awk command prints the club count, colon (:) character, a space, the club
name. This output piped to sort to have a descending order of the count. Thus we output the
highest to lowest of awards for the respective club.

Page 41

AWK – Education Awards Tally (1)

$ cat EdTallyByAwards3
awk -F"|" '
Group Pathways Education Awards with string concatenation
$2 ~ /[A-Z]{2}[12345]/ { $2 = "Level" substr($2,3,1) }

Associative Array
{ Award[$2]++ }

END {
for (i in Award) printf ("%5d\t%s\n", Award[i], i);

} ' $1 | sort –nr
$ sh EdTallyByAwards3 EdAwards.fnl

44 CC
43 CL
43 ALB
20 ACB
10 Level2
10 Level1
8 LDREXC
6 Level3
6 ACS
2 Level4
1 Level5
1 DTM
1 ALS
1 ACG

$ cat EdTallyByAwards3
awk -F"|" '
Group Pathways Education Awards with string concatenation
$2 ~ /[A-Z]{2}[12345]/ { $2 = "Level" substr($2,3,1) }

Associative Array
{ Award[$2]++ }

END {
for (i in Award) printf ("%5d\t%s\n", Award[i], i);

} ' $1 | sort –nr
$ sh EdTallyByAwards3 EdAwards.fnl

44 CC
43 CL
43 ALB
20 ACB
10 Level2
10 Level1
8 LDREXC
6 Level3
6 ACS
2 Level4
1 Level5
1 DTM
1 ALS
1 ACG

Here is an example of using associative arrays, However, we will include pattern matches to
modify the array index for pathway education codes. The pathway education awards have
code that consists of 2 uppercase characters followed by the third character being a digit 1
thru 5.

The field separator is the vertical bar; as specified by –F"|". The expression for the pattern
match is a relational expression, $2 ~ /[A-Z]{2}[12345]/, states Field 2 must
match an uppercase letter ranging a thru z and must be exactly two characters; followed by
a digit ranging 1 thru 5.

For each pattern match, reassign the string "Level“ and concatenate with the digit retrieved
by the awk substr() function. This results in generating new values for $2 that include
Level1, Level2, Level3, Level4, and Level5. There are no requirements to manipulate
values of the other education codes.

The old education codes and the updated pathway education become the award indexes.

If the index does not exist, create it, and increment it by one. If the index does exist,
increment it by one. After all the records are processed, precede to the end statement.

When all the records are processed, the END action will execute a for loop that prints each
index with the format: print the record count and the award (index). The two fields are
separated by a tab. The output stream is piped to the sort command to numerically (-n) and
print the numbers from highest number to lowest.

Page 42

AWK – Education Awards Tally (2)

$ EdTallyByAwards4
awk -F"|" '
Group Pathways Education Awards concateating with the use of
substr() and sprintf() functions
$2 ~ /[A-Z]{2}[12345]/ { $2=sprintf("%s%s","Level",substr($2,3,1)) }

Associative Array
{ Award[$2]++ }

END {
for (i in Award) printf ("%5d\t%s\n", Award[i], i);

} ' $1 | sort –nr

$ sh EdTallyByAwards4 EdAwards.fnl
44 CC
43 CL
43 ALB
20 ACB
10 Level2
10 Level1
8 LDREXC
6 Level3
6 ACS
2 Level4
1 Level5
1 DTM
1 ALS
1 ACG

$ EdTallyByAwards4
awk -F"|" '
Group Pathways Education Awards concateating with the use of
substr() and sprintf() functions
$2 ~ /[A-Z]{2}[12345]/ { $2=sprintf("%s%s","Level",substr($2,3,1)) }

Associative Array
{ Award[$2]++ }

END {
for (i in Award) printf ("%5d\t%s\n", Award[i], i);

} ' $1 | sort –nr

$ sh EdTallyByAwards4 EdAwards.fnl
44 CC
43 CL
43 ALB
20 ACB
10 Level2
10 Level1
8 LDREXC
6 Level3
6 ACS
2 Level4
1 Level5
1 DTM
1 ALS
1 ACG

Here is an example of using associative arrays, However, we will include pattern matches to
modify the array index for pathway education. The pathway education awards have code
that consists of 2 uppercase characters followed by the third character being a digit 1 thru 5.

The field separator is the vertical bar; as specified by –F"|". The expression for the pattern
match is a relational expression, $2 ~ /[A-Z]{2}[12345]/, states Field 2 must
match an uppercase letter ranging a thru z and must be exactly two characters; followed by
a digit ranging 1 thru 5.

For each pattern match, $2 is modified by using the awk sprintf() function. The sprintf()
format is "%s%s" combining the string "Level" and the substr() grabbing the digit (the
third character in the pathway code. function results and concatenate with the digit retrieved
The new values for $2 that include Level1, Level2, Level3, Level4, and Level5. There are
no requirements to manipulate values of the other education codes.

The old education codes and the updated pathway education become the award indexes.

If the index does not exist, create it, and increment it by one. If the index does exist,
increment it by one. After all the records are processed, precede to the end statement.

When all the records are processed, the END action will execute a for loop that prints each
index with the format: print the record count and the award (index). The two fields are
separated by a tab. The output stream is piped to the sort command to numerically (-n) and
print the numbers from highest number to lowest (-r reverse the results from high to low).

Page 43

AWK – Education Awards Tally (3)

$ EdTallyByAwards5
awk -F"|" '

Group Pathways Education Awards using the substr() function
to tally the paths (first two characters)
$2 ~ /[A-Z]{2}[12345]/ {

$2=sprintf("%s",substr($2,1,2))
Associative Array
Award[$2]++

}
END {

for (i in Award) printf ("%5d\t%s\n", Award[i], i);
} ' $1 | sort +0nr -1

$ sh EdTallyByAwards5 EdAwards.fnl
8 EH
4 MS
3 DL
3 PI
3 PM
2 EC
2 LD
2 SR
2 VC

$ EdTallyByAwards5
awk -F"|" '

Group Pathways Education Awards using the substr() function
to tally the paths (first two characters)
$2 ~ /[A-Z]{2}[12345]/ {

$2=sprintf("%s",substr($2,1,2))
Associative Array
Award[$2]++

}
END {

for (i in Award) printf ("%5d\t%s\n", Award[i], i);
} ' $1 | sort +0nr -1

$ sh EdTallyByAwards5 EdAwards.fnl
8 EH
4 MS
3 DL
3 PI
3 PM
2 EC
2 LD
2 SR
2 VC

Here is an example of using associative arrays, However, we will include pattern matches to
modify the array index for pathway education. The pathway education awards have code
that consists of 2 uppercase characters followed by the third character being a digit 1 thru 5.

The field separator is the vertical bar; as specified by –F"|". The expression for the pattern
match is a relational expression, $2 ~ /[A-Z]{2}[12345]/, states Field 2 must
match an uppercase letter ranging a thru z and must be exactly two characters; followed by
a digit ranging 1 thru 5.

The $2 is reassigned the first two characters of pathway code when the pattern is matched,
otherwise, the code is from the old program.

The old education codes and the updated pathway education become the award indexes.

If the index does not exist, create it, and increment it by one. If the index does exist,
increment it by one. After all the records are processed, precede to the end statement.

When all the records are processed, the END action will execute a for loop that prints each
index with the format: print the record count and the award (index). The two fields are
separated by a tab. The output stream is piped to the sort command to numerically (-n) and
print the numbers from highest number to lowest (-r reverse the results from high to low).

Page 44

AWK – Education Awards Tally (4)
$ cat EdTallyByAwards5
awk -F"|" '

Group Pathways Education Awards using the substr() and
length()

functions to extract the Full Path Description
$2 ~ /[A-Z]{2}[12345]/ {

number=length($1)
string=substr($1,1,number-2)
Associative Array
Award[string]++

}
END {

for (i in Award) printf ("%5d\t%s\n", Award[i], i)
} ' $1 | sort +0nr -1

$ sh EdTallyByAwards6 EdAwards.fnl
8 Engaging Humor
4 Motivational Strategies
3 Dynamic Leadership
3 Persuasive Influence
3 Presentation Mastery
2 Effective Coaching
2 Leadership Development
2 Strategic Relationships
2 Visionary Communication

Here is an example of using associative arrays, where the index is the pathway name
excluding the level number.

The field separator is the vertical bar; as specified by –F"|". The expression for the pattern
match is a relational expression, $2 ~ /[A-Z]{2}[12345]/, matching an uppercase
letter ranging a thru z and must be exactly two characters; followed by a digit ranging 1 thru
5. This example extracts the pathway name for the index.

First awk function length() calculates the length $1. Then the string is assigned the string
extracted from the awk function substr(). The calculation number-2 strips off the space and
digit.

If the index does not exist, create it, and increment it by one. If the index does exist,
increment it by one. After all the records are processed, precede to the end statement.

When all the records are processed, the END action will execute a for loop that prints each
index with the format: print the record count and the award (index). The two fields are
separated by a tab. The output stream is piped to the sort command to numerically (-n) and
print the numbers from highest number to lowest (-r reverse the results from high to low).

Page 45

Filter Yum Update Log

$ vi yum-logfilter
s:^[::g # Remove the escape character globally
s:^M::g # Remove <ctrl><M> globally
s:^G::g # Remove <ctrl><G> globally
s:^H::g # Remove <ctrl><H> globally
s:\[1m::g # Remove '[1m' globally
s:\[m::g # Remove '[m' globally
s:[(]B::g # Remove '[(]B' globally
s:\[32m::g # Remove '[32m' globally
s:^\].+(#):\1: # Discard all characters except the root prompt
s:..2004l::g # Remove any 2 printable character + '2004l' globally
/exit/d # Delete the line with exit
~
$ cat yum-massage
unset LS_COLOR
export TERM=xterm-mono
sed -rf yum-logfilter $1 |
awk '/ETA/ { printf"%15s %-50s %6s %s\n", $1,$(NF-6),$(NF-2),$(NF-1) ; next}

/Running scriptlet:/ {printf "%s %s %s %10s\n",$1,$2,$3,$4 ; next}
/Upgrading:$/ {print $0 ; next }
/Upgrading/ {printf "%s: %-50s\t%10s\n", $1,$(NF-1),$(NF); next}
/Cleanup/ { printf "%s: %-50s\t%10s\n", $1,$3,$(NF) ; next}
/^Installing:$/ { print $0 ; next}
/Installing / {printf "%10s: %-50s\t%10s\n", $1,$(NF-1),$(NF) ; next}
/Verifying/ {printf "%9s: %-50s\t%10s\n", $1,$3,$(NF) ; next}
/Preparing/ {printf "%9s: %-70s\n", $1,$(NF) ; next}
/#/ {printf "%s\n", substr($0,index($0,"#")) ; next }
/$/ {printf "%s\n", substr($0,index($0,"$")) ; next }
/x86_64 +$/ { print substr($0,1,75) ; next }
/Last metadata/ {printf "%s\n", substr($0,index($0,"Last metadata")) ; next }
{ print } '

$

$ vi yum-logfilter
s:^[::g # Remove the escape character globally
s:^M::g # Remove <ctrl><M> globally
s:^G::g # Remove <ctrl><G> globally
s:^H::g # Remove <ctrl><H> globally
s:\[1m::g # Remove '[1m' globally
s:\[m::g # Remove '[m' globally
s:[(]B::g # Remove '[(]B' globally
s:\[32m::g # Remove '[32m' globally
s:^\].+(#):\1: # Discard all characters except the root prompt
s:..2004l::g # Remove any 2 printable character + '2004l' globally
/exit/d # Delete the line with exit
~
$ cat yum-massage
unset LS_COLOR
export TERM=xterm-mono
sed -rf yum-logfilter $1 |
awk '/ETA/ { printf"%15s %-50s %6s %s\n", $1,$(NF-6),$(NF-2),$(NF-1) ; next}

/Running scriptlet:/ {printf "%s %s %s %10s\n",$1,$2,$3,$4 ; next}
/Upgrading:$/ {print $0 ; next }
/Upgrading/ {printf "%s: %-50s\t%10s\n", $1,$(NF-1),$(NF); next}
/Cleanup/ { printf "%s: %-50s\t%10s\n", $1,$3,$(NF) ; next}
/^Installing:$/ { print $0 ; next}
/Installing / {printf "%10s: %-50s\t%10s\n", $1,$(NF-1),$(NF) ; next}
/Verifying/ {printf "%9s: %-50s\t%10s\n", $1,$3,$(NF) ; next}
/Preparing/ {printf "%9s: %-70s\n", $1,$(NF) ; next}
/#/ {printf "%s\n", substr($0,index($0,"#")) ; next }
/$/ {printf "%s\n", substr($0,index($0,"$")) ; next }
/x86_64 +$/ { print substr($0,1,75) ; next }
/Last metadata/ {printf "%s\n", substr($0,index($0,"Last metadata")) ; next }
{ print } '

$

This is an example taking advantage of sed and awk to modify a log with embedded control
characters. The sed command, referencing the yum-logfilter file, is the best means for
stripping out escape and control characters; along character strings that are distracters.

It is important note actions take for satisfied pattern matches. For each pattern match, the
printf directive prints revised record based upon format specified. The next directive states
to go to the next record. That means if we had a pattern match, the solo action {print} is
ignored. Those records that did not match a pattern will have that record unchanged and
printed.

The pattern matches in sequential order are:

 If the line has the character string 'ETA', print he first field, 6 fields to the left of the
last field, 2 fields to the left of the last field, and the last field.

 Print the 1st, 2nd, 3rd, and 4th fields.
 Print the entire when matching 'Upgrading$' is matched.
 If the pattern match is 'Upgrading ', print the first field, 1 field left of the last field, the

last field.
 If the pattern is 'Verifying', print the 1st field, the 3rd field, and the last field.
 If the pattern is 'Preparing', print the 1st field and the last field
 If the pattern is matching the root prompt (#), print the substring starting at the root

prompt. Since no length is provided , the remainder of the character string is printed.
 If the pattern is matching the user prompt ($), print the substring starting at the user

prompt. Since no length is provided , the remainder of the character string is printed

Again, those records that did not satisfy a pattern match, the entire record is printed.

Page 46

Comma to Newline Conversion

== Contents of DisneyEmails ==
$ cat DisneyEmails
pango@dog.com,goofy@dog.com,daffy@duck.com,kirk@startrek.net,judd@defense.org

== Illustrate replacing "," with newlines "\n\" ==
$ sed s/,/\n/g DisneyEmails
pango@dog.com
goofy@dog.com
daffy@duck.com
kirk@startrek.net
judd@defense.org

$ cat DisneyEmails
pango@dog.com,goofy@dog.com,daffy@duck.com,kirk@startrek.net,judd@defense.org

== Perform in-place substitution; then display contents ==
$ sed -i s/,/\n/g DisneyEmails ; cat DisneyEmails
pango@dog.com
goofy@dog.com
daffy@duck.com
kirk@startrek.net
judd@defense.org
$

== Contents of DisneyEmails ==
$ cat DisneyEmails
pango@dog.com,goofy@dog.com,daffy@duck.com,kirk@startrek.net,judd@defense.org

== Illustrate replacing "," with newlines "\n\" ==
$ sed s/,/\n/g DisneyEmails
pango@dog.com
goofy@dog.com
daffy@duck.com
kirk@startrek.net
judd@defense.org

$ cat DisneyEmails
pango@dog.com,goofy@dog.com,daffy@duck.com,kirk@startrek.net,judd@defense.org

== Perform in-place substitution; then display contents ==
$ sed -i s/,/\n/g DisneyEmails ; cat DisneyEmails
pango@dog.com
goofy@dog.com
daffy@duck.com
kirk@startrek.net
judd@defense.org
$

There are times when a comma separated list needs to have the comma replaced with the
newline.

Notice the comma separated email addresses. We need to add additional email addresses.
Therefore, it is a sound practice to:

1. Replace the commas with newlines.
2. Insert or remove email addresses as needed for email updates.
3. Generate a unique sorted list to avoid duplicates
4. Proceed to replace the newlines with commas.

The above slide first displays the contents of Disney Emails. The first sed command
performs the pattern match and replacement, replacing commas with newlines globally and
outputs the results.

The second cat confirms the file was not updated.

The next sed of command performs an in-place substitution without creating a back-up file
(no suffix specified), replacing commas with newlines globally; followed by the third cat
command verifying the changes were made and saved in the original file DisneyEmails.

Page 47

Newline to Comma Conversion

== Contents of DisneyEmails ==
$ cat DisneyEmails
pango@dog.com
goofy@dog.com
daffy@duck.com
kirk@startrek.net
judd@defense.org

== Illustrate replacing newlines with commas "\n" ==
$ sed ':a;N;ba;s/\n/,/g' DisneyEmails
pango@dog.com,goofy@dog.com,daffy@duck.com,kirk@startrek.net,judd@defense.org

== Perform in-place subsitution; then display contents ==
$ sed -i ':a;N;ba;s/\n/,/g' DisneyEmails ; cat DisneyEmails
pango@dog.com,goofy@dog.com,daffy@duck.com,kirk@startrek.net,judd@defense.org

== Contents of DisneyEmails ==
$ cat DisneyEmails
pango@dog.com
goofy@dog.com
daffy@duck.com
kirk@startrek.net
judd@defense.org

== Illustrate replacing newlines with commas "\n" ==
$ sed ':a;N;ba;s/\n/,/g' DisneyEmails
pango@dog.com,goofy@dog.com,daffy@duck.com,kirk@startrek.net,judd@defense.org

== Perform in-place subsitution; then display contents ==
$ sed -i ':a;N;ba;s/\n/,/g' DisneyEmails ; cat DisneyEmails
pango@dog.com,goofy@dog.com,daffy@duck.com,kirk@startrek.net,judd@defense.org

The above slide first displays the contents of Disney Emails that have each email on a
separate line. The first sed command performs the pattern match and replacement, replacing
newlines with commas and outputs the results.

The second cat confirms the file was not updated.

The next sed of command performs an in-place substitution without creating a back-up file
(no suffix specified), replacing the newlines with commas; followed by the third cat
command verifying the changes were made and saved in the original file DisneyEmails.

The :pattern:replacement:, being ':a;N;ba;s/\n/,/g', is defined as follows:
1. sed starts by reading the first line excluding the newline into the pattern space.
2. Create a label via :a.
3. Append a newline and next line to the pattern space via N.
4. If we are before the last line, branch to the created label $!ba ($! means not to do it on

the last line. This is necessary to avoid executing N again, which would terminate the
script if there is no more input!).

5. Finally the substitution replaces every newline with a space on the pattern space (which
is the whole file).

The single-line results can be copied and pasted appropriate email (To: or CC:).

Page 48

Reformat Numbers Inserting Commas

$ cat NUMBERS
49
25
104
300
41261
27525
21654680
48672067

$ cat awk readableNumbers2
awk '{while (match($0, /(^[^.0123456789])[0123456789]{4,}/))

{
$0 = substr($0, 1, RSTART+RLENGTH-4) "," substr($0, RSTART+RLENGTH-3)

}
printf "%12s\n",$0

}' NUMBERS

$ sh readableNumbers2
49
25

104
300

41,261
27,525

21,654,680
48,672,067

$ cat NUMBERS
49
25
104
300
41261
27525
21654680
48672067

$ cat awk readableNumbers2
awk '{while (match($0, /(^[^.0123456789])[0123456789]{4,}/))

{
$0 = substr($0, 1, RSTART+RLENGTH-4) "," substr($0, RSTART+RLENGTH-3)

}
printf "%12s\n",$0

}' NUMBERS

$ sh readableNumbers2
49
25

104
300

41,261
27,525

21,654,680
48,672,067

This slide illustrates a unique approach to reformatting numbers to insert appropriate
commas.

Page 49

modDates script
$ nl –w 2 modDates
1 awk -F "|" '
2 BEGIN { OFS="|" }
3 /Jan/ { sub(/Jan/,"01",$6) }
4 /Feb/ { sub(/Feb/,02",$6) }
5 /Mar/ { sub(/Mar/,"03",$6) }
6 /Apr/ { sub(/Apr/,"04",$6) }
7 /May/ { sub(/May/,"05",$6) }
8 /Jun/ { sub(/Jun/,"06",$6) }
9 /Jul/ { sub(/Jul/,"07",$6) }
10 /Aug/ { sub(/Aug/,"08",$6) }
11 /Sep/ { sub(/Sep/,"09",$6) }
12 /Oct/ { sub(/Oct/,"10",$6) }
13 /Nov/ { sub(/Nov/,"11",$6) }
14 /Dec/ { sub(/Dec/,"12",$6) }
15 {
16 # Old $6: Mon 10 Feb 2025 05:25:17 PM EST
17 # New $6: Mon 10 02 2025 05:25:17 PM EST
18 DateString=substr($6,5,10)
19 Day=substr(DateString,1,2)
20 Month=substr(DateString,4,2)
21 Year=substr(DateString,7,4)
22 NewString=sprintf("%s-%s-%s", Year, Month, Day)
23 # No slashes (/), the variable DateString is not treated
24 # as a RegEx DateString is replaced with the value in
25 # NewString for field $6 (sixth positional field)
26 sub(DateString,NewString,$6)
27 }
28 { print }
29 ' $1

This slide demonstrates modifying 3 character; followed by a space, followed by a day of
month, followed by a comma, followed by a four-digit year.

Lines 3-14 has the pattern substitute match of the 3 character month with its corresponding
2-digit month.

Next is the block statement, with no pattern match RegEx. At present the date format is
currently 'MM DD YYYY'. This character string in $6 is has the starting point at position 5
10 characters long. Thus substr($6,5,10) grabs that string and assigns it to the
variable DateString. Now reformat the 'MM DD YYYY' to 'YYYY-MM-DD'; taking
advantage of the sprintf() function and assign that modified value to NewString. Next
substitute DateString with the newly created value of NewString; and update field $6.

Now that all the substitutions are complete; proceed to the next block statement, with no
pattern match specified that prints the entire record.

Page 50

Execution Results

$ cat RpmTable
sed|x86_64|9.el9|4.8|Unspecified|Mon 10 Feb 2025 05:25:26 PM EST
iw|x86_64|1.el9|6.9|Unspecified|Mon 10 Feb 2025 05:25:38 PM EST
inih|x86_64|6.el9|49|Unspecified|Mon 10 Feb 2025 05:25:43 PM EST
jq|x86_64|17.el9|1.6|Unspecified|Mon 10 Feb 2025 05:25:43 PM EST
jose|x86_64|1.el9|14|Unspecified|Mon 10 Feb 2025 05:25:55 PM EST
gom|x86_64|6.el9|0.4|Unspecified|Mon 10 Feb 2025 05:26:03 PM EST
zsh|x86_64|9.el9|5.8|Unspecified|Sun 16 Feb 2025 11:21:32 PM EST
.
.
.

$ sh modDates RpmTable
sed|x86_64|9.el9|4.8|Unspecified|Mon 2025-02-10 05:25:26 PM EST
iw|x86_64|1.el9|6.9|Unspecified|Mon 2025-02-10 05:25:38 PM EST
inih|x86_64|6.el9|49|Unspecified|Mon 2025-02-10 05:25:43 PM EST
jq|x86_64|17.el9|1.6|Unspecified|Mon 2025-02-10 05:25:43 PM EST
jose|x86_64|1.el9|14|Unspecified|Mon 2025-02-10 05:25:55 PM EST
gom|x86_64|6.el9|0.4|Unspecified|Mon 2025-02-10 05:26:03 PM EST
zsh|x86_64|9.el9|5.8|Unspecified|Sun 2025-02-16 11:21:32 PM EST
.
.
.

This slide illustrates converting the 'Mon Day, YYYY' to 'YYYY-MM-DD' format to after
executing the script modDates.

Page 51

Execution Results

$ nl –w2 rpmUpdDate
1 for Date in $(cut -f6 -d"|" RpmTable2 | cut -c5-15 | sort -u)
2 do
3 count=$(grep -c "${Date}" RpmTable2)
4 printf "%5d: %s\n" "${count}" "${Date}"
5 done | sort –nr

$ sh rpmUpdDate
1270: 2025-02-10
82: 2025-03-27
25: 2025-02-11
20: 2025-04-03
2: 2025-02-12
1: 2025-04-05
1: 2025-03-10
1: 2025-02-16

$ nl –w2 rpmUpdDate
1 for Date in $(cut -f6 -d"|" RpmTable2 | cut -c5-15 | sort -u)
2 do
3 count=$(grep -c "${Date}" RpmTable2)
4 printf "%5d: %s\n" "${count}" "${Date}"
5 done | sort –nr

$ sh rpmUpdDate
1270: 2025-02-10
82: 2025-03-27
25: 2025-02-11
20: 2025-04-03
2: 2025-02-12
1: 2025-04-05
1: 2025-03-10
1: 2025-02-16

One may ask why did we change the date format. Simply put the 'YYYY-MM-DD' format
is a much easier key for tallying updates on a specific date.

Line 1 is the beginning of the for-loop to create a unique list of dates that will be assigned to
the shell variable Date. Line 3 executes grep –c to calculate the number of matches. Line 4
will print the record count of the $Date match; a followed by a colon; followed by a space;
followed by the date string. This output is piped to the sort command; sorting numerically in
reverse order (descending order).

Notice the output from executing sh rpmUpdDate.

Page 52

genExample

1 #! /usr/bin/awk
2
3 BEGIN { print "clear" }
4
5 /^prep:/ { command=substr($0,7) ; print command }
6
7 /^:/ { command=substr($0,3)
8 print "echo -n","\"" "\$",command "\""
9 print "read pause"

10 print command
11 printf "%s\n", "printf \"$ \""
12 print "read pause"
13 }
14 /^clear/ { print "clear" }
15
16 /^#/ { print "echo", "\"" "==", substr($0,3), "==" "\"" }
17 /^>:/ { print "echo", "'" ">>>", substr($0,3), "<<<" "'" }

1 #! /usr/bin/awk
2
3 BEGIN { print "clear" }
4
5 /^prep:/ { command=substr($0,7) ; print command }
6
7 /^:/ { command=substr($0,3)
8 print "echo -n","\"" "\$",command "\""
9 print "read pause"

10 print command
11 printf "%s\n", "printf \"$ \""
12 print "read pause"
13 }
14 /^clear/ { print "clear" }
15
16 /^#/ { print "echo", "\"" "==", substr($0,3), "==" "\"" }
17 /^>:/ { print "echo", "'" ">>>", substr($0,3), "<<<" "'" }

This genExample awk script is a very powerful script to generate interctive demos to teach
specific topics in the Unix or Linux environments.

On Line 3 the BEGIN action will print the clear command to the first command executed
for the demo script.

On Line 5 the pattern match is 'prep:' will print the preparatory command before
executing any following commands.

On Lines 7 thru 13 the pattern match is '^:' stating to match a colon at the beginning of
the record. Satisfied matches results in:
1. Line 7: Use the substr() to extract characters starting at position 3 up to the end of

record and assign it to the variable command.
2. Line 8: Print the string 'echo –n'; followed by printing the command, embedded in

double quoted, to simulate the command entered on the command line. Notice the –n
option is used to disable outputting a newline.

3. Line 9: Have a read pause; requiring one to press the <enter> key to execute the
command.

4. Line 10: Print the command that will be executed after pressing the <enter> key.
5. Line 11: Print the user prompt. Notice there s no '\n’ which will preempt a newline.
6. Line 12: Print a ‘read pause’ to pause the script.

On Line 14, if the record has the string 'clear', print the string 'clear' that will clear the
screen in the script generated.

Line 16 & 17 will print comments for documentation purposes.

Page 53

GenDemo

1 prep: cd /home/gstafford/Training/RegEx/tmp
2 prep: rm *.zip *.gz 2> /dev/null
3 prep: cp .commands commands
4 >: Print current working directory and
5 >: contents of current directory
6 : pwd; ls
7 # Use gunzip to compress the file
8 : gzip commands
9 # List the contents of $(pwd)

10 : ls
11 >: Contrasting the difference between
12 >: executing grep and zgrep commands
13 : grep '^[fg]grep$' commands.gz
14 : zgrep '^[fg]grep$' commands.gz
15 >: zgrep need the '-E' option to
16 >: support regular expressions
17 : zgrep 'fgrep$|^z(more|less|new)' commands.gz
18 : zgrep -E 'fgrep$|^z(more|less|new)' commands.gz
19 prep: cd /home/gstafford/Training/RegEx/UniForum

1 prep: cd /home/gstafford/Training/RegEx/tmp
2 prep: rm *.zip *.gz 2> /dev/null
3 prep: cp .commands commands
4 >: Print current working directory and
5 >: contents of current directory
6 : pwd; ls
7 # Use gunzip to compress the file
8 : gzip commands
9 # List the contents of $(pwd)

10 : ls
11 >: Contrasting the difference between
12 >: executing grep and zgrep commands
13 : grep '^[fg]grep$' commands.gz
14 : zgrep '^[fg]grep$' commands.gz
15 >: zgrep need the '-E' option to
16 >: support regular expressions
17 : zgrep 'fgrep$|^z(more|less|new)' commands.gz
18 : zgrep -E 'fgrep$|^z(more|less|new)' commands.gz
19 prep: cd /home/gstafford/Training/RegEx/UniForum

In the GenDemo file:

 Lines 1 thru 3 will change directory to /home/gstafford/Training/RegEx/tmp.
 Lines 4 and 5 are comments to be printed
 Line 6 has the command line to be demoed; pwd and ls.
 Line 7 is a comment.
 Line 8 demos the gzip command compressing the command file
 Line 9 is a comment stating the contents of the directory will be listed
 Line 10 is the execution to list the file(s) in the current directory
 Lines 11 and 12 are comments that the grep and zgrep command will be contrasted

searching for a pattern match in a gzip’d file.
 Line 13 and 14 is the demo of executing the grep and zgrep commands respectively.
 Lines 15 and 16 are comments contrasting the requirement to have the '-E' option when

the need exists to interpret extended regular expressions.
 Lines 17 and 18 is to demo the two commands.
 Line 19 is the forces the return to the /home/gstafford/Training/RegEx/UniForum

directory.

Page 54

GenDemo.sh

1 clear
2 cd /home/gstafford/Training/RegEx/tmp
3 rm *.zip *.gz 2> /dev/null
4 cp .commands commands
5 echo '>>> Print current working directory and <<<'
6 echo '>>> contents of current directory <<<'
7 echo -n "$ pwd; ls"
8 read pause
9 pwd; ls

10 printf "$ "
11 read pause
12 echo "== Use gunzip to compress the file =="
13 echo -n "$ gzip commands"
14 read pause
15 gzip commands
16 printf "$ "
17 read pause
.
.
.

1 clear
2 cd /home/gstafford/Training/RegEx/tmp
3 rm *.zip *.gz 2> /dev/null
4 cp .commands commands
5 echo '>>> Print current working directory and <<<'
6 echo '>>> contents of current directory <<<'
7 echo -n "$ pwd; ls"
8 read pause
9 pwd; ls

10 printf "$ "
11 read pause
12 echo "== Use gunzip to compress the file =="
13 echo -n "$ gzip commands"
14 read pause
15 gzip commands
16 printf "$ "
17 read pause
.
.
.

This is a portion of the GenDemo.sh script:

 Lines 1 – 4 executes the commands clear the screen, cd directory to the tmp subdirectory
under /home/gstafford/Training/RegEx; remove the existence of any files with a '.zip'
or '.gz' suffixes; copy the hidden .command to commands.

 Lines 5 thru 6 are self-explanatory comments to be printed
 Line 7 echoes the two commands to be demoed (pwd and ls).
 Line 8 pauses the script.
 Line 9 executes the two commands pwd and ls.
 Line 10 prints the user prompt '$'.
 Line 11 pause the script.
 Line 12 print the comment.
 Line 13 echoes the the command gzip command to be demoed.
 Line 13 pause the script.
 Line 14 pause the script.
 Line 15 demo the execution of the gzip command.
 Line 16 print the user prompt '$'.
 Line 17 pause the script.

