

Intro to Android

Uniforum meeting @ IIT’s Rice Campus

July. 2009
(by Roberto C. Serrano)

Who am I?

• Roberto C. Serrano
• Software engineer at Motorola
• Android Platform
• Multimedia and Graphics Team
• Developer Advocate for the Platform team

– Community Initiatives and Engagement:
• Flourish 2009
• MADg
• Chicago Android Developers group

• Newbie Android Developer
• Contact: ohrock@gmail.com or twitter.com/ohrock

mailto:ohrock@gmail.com

In this presentation

• How to Install the Android SDK
• Introduction to the Android Env.

– Java View in Eclipse
– The emulator
– DDMS

• Introduction to the Android OS
• Quick intro to an Android App.
• Introduction to an android Activity/App.

– Layouts
– The manifest.xml
– Intro. to Intents

Resources

Important Developer Resources:

 SDK: http://developer.android.com

 Android Source: http://source.android.com/

 Moto Android Developer Resources: http
://developer.motorola.com/

http://developer.android.com/
http://developer.android.com/
http://source.android.com/
http://source.android.com/
http://developer.motorola.com/
http://developer.motorola.com/

Additional Website

 Google groups: http://groups.google.com
 Chicago Androids
 Android Developers
 android-platform

http://groups.google.com/

The SDK

Supported Operating Systems

 Linux (tested on Linux Ubuntu Dapper
Drake)

 Windows XP (32-bit) or Vista (32- or 64-bit)

 Mac OS X 10.4.8 or later (x86 only)

Pre install Requirements

 Eclipse 3.3 (Europa), 3.4 (Ganymede)
 Eclipse Classic IDE package is not

supported.
 JDK 5 or JDK 6 (JRE alone is not

sufficient)
 Apache Ant 1.6.5 or later for Linux and

Mac, 1.7 or later for Windows???

Install SDK

 http://developer.android.com/sdk/1.5_r2/index.html

 Example I created directory called android...
 /home/neal/android/android-sdk-linux_x86-1.5_r1

http://developer.android.com/sdk/1.5_r2/index.html

Setup development env.
 On Linux, edit your ~/.bash_profile or ~/.bashrc file. Look

for a line that sets the PATH environment variable and
add the full path to the tools/ directory to it. If you don't
see a line setting the path, you can add one: export
PATH=${PATH}:<your_sdk_dir>/tools

 On a Mac, look in your home directory for .bash_profile
and proceed as for Linux. You can create the
.bash_profile if you haven't already set one up on your
machine.

 On Windows, right-click on My Computer, and select
Properties. Under the Advanced tab, hit the Environment
Variables button, and in the dialog that comes up, double-
click on Path (under System Variables). Add the full path
to the tools/ directory to the path.

Test your setup

 In the command window type adb
 You should see the following
 Android Debug Bridge version 1.0.20

 Now we're ready for eclipse!

Install Eclipse

 http://www.eclipse.org/downloads/

http://www.eclipse.org/downloads/

Eclipse 3.4 (Ganymede) setup

 After you install eclipse:
 Start Eclipse, then select Help > Software Updates....
 In the dialog that appears, click the Available Software tab.
 Click Add Site...
 Enter the Location:
 https://dl-ssl.google.com/android/eclipse/
 If you have trouble aqcuiring the plugin, try using "http" in the

Location URL, instead of "https" (https is preferred for security
reasons).

 Click OK.

Eclipse 3.4 setup

 Back in the Available Software view, you should
see the plugin listed by the URL, with "Developer
Tools" nested within it. Select the checkbox next
to Developer Tools and click Install...

 On the subsequent Install window, "Android
DDMS" and "Android Development Tools" should
both be checked. Click Next.

 Read and accept the license agreement, then
click Finish.

 Restart Eclipse.

Introduction to the Android
Environment

 Start Eclipse.
 Click File->New->android project
 Click Create project from existing
 Location :

<SDK>platforms/android-1.5/sa
mples/NotePad

 Click Android 1.5 If its not
selected

 Click Finish
 Project is created

Compile Android Example

Starting the emulator
 Click Run->Run
 Select Android app click ok

Emulator Starts

Running your application

 Once the application
launches select menu.

 Click on add note

 Thats It.....

Introduction to the Android OS

Quick shell demo

• http://code.google.com/p/android-vnc/
• Get fbvncserver binary
• Load it into the phone/emulator:

– adb push fbvncserver /data/local
– adb shell chmod 777 /data/local/fbvncserver
– adb forward tcp:5901 tcp:5901

• Run the vnc server:
– adb shell /data/local/fbvncserver

http://code.google.com/p/android-vnc/

What Android is not

• A Java ME implementation

• An application Layer (UIQ or S60)

• A handset
• Google’s Answer to iPhone…

• … nor a way of locking people into Google
apps.

Openness of Android
• “The first truly open and comprehensive platform

for mobile devices…”
• Android Components:

– A hrdw. reference design describing the min.
requirements to support the stack

– Linux Kernel
– Open Source Libraries
– Run time environment (Dalvik)
– Application Framework
– A user interface framework
– Set of pre-installed applications (a fully functioning Smart

Phone)
– Software devel. kit (Tools, plug-ins, and documentation)

Android Applications

• An eMail client (GMail)
• SMS management app.
• PIM (Google calendar, etc)

• Google Maps App.
• WebKit based browser
• Instant Messaging Client (GChat, AIM, MSN)

• Music Player and Picture viewer
• Android Market Place

Android SDK Features

• Open platform (no fees, no licensing)
• Wi-fi hrdw. acess
• Full comm. stack (GSM, EDGE, 3G, Bluetooth)
• GPS
• Multimedia (playback and recording of audio, video, etc)
• APIs to accel. And compass hrdwr.
• IPC messaging
• Share Data stores
• Web-Kit browser
• P2P via Google Talk
• Eventually hwrd. accel. 3D graphics (Open GL ES)
• Media Libraries (Licensed for MP3, etc…)
• And open Application Framework (reuse and replacement)

Android NDK Features
(release June ‘09)

• The initial goal is to support JNI shared libraries
written in C or C++ that link with the Android
versions of libc and libm.

• In a future release we hope to support linking with
OpenGL ES and audio libraries, which should
enable high-performance games.

• The NDK can also be used to compile Linux
executables and shared libraries that only require
the subset of Linux APIs that are supported by the
NDK. This might be useful for developers wishing
to port utility programs to help develop and test
their Android applications.

(http://groups.google.com/group/android-ndk for more info.)

http://groups.google.com/group/android-ndk

Platform Features

• Agnostic Access to Hardware (GPS,
accel., 3D, Geocoding, etc.)

• Background services
• SQLite DB
• Share data and Interapp. Communication
• P2P service with Google Talk
• Extensive Media Support
• Optimized Mem. and Process Mngmnt.

Android Layer Cake

H
A

L
C

O
R

E
 A

N
D

R
O

ID
 +

 L
IB

R
A

R
IE

S

HAL

Multimedia / Graphics

TCMD

MBM / Boot loader

CONNECTIVITY
USB

BLUETOOTH
Wi-Fi

CONNECTIVITY
MODEM + RIL

K
E
R

N
E
L
+

B
S

P

GPS

The Android Activity

Activities and Tasks

• Dan Morrill’s definition:
– An Activity is a “molecule”: a discrete chunk of

functionality
– A task is a collection of Activities

– A “process” is a standard Linux process

Activities (continue)

Activities (continue)

Activities vs Tasks (Apps)

• A concrete class in the
API

• An encapsulation of a
particular operation

• They run in the process
of the .APK which
installed them

• Optionally associated
with a window (UI)

• An execution Context

• More of a notion than a
concrete API entity

• A collection of related
Activities

• Capable of spanning
multiple processes

• Associated with their own
UI history stack

• What users on other
platforms know as
“applications”

Process Basics

• How does it all of this relate to the Unix
roots of Android?
– Android process == Linux process (w/ its own

unique UID)

– By default, 1 process per APK
– By default, 1 thread per process
– Most components interleave events into the

main thread

Android Activity Life Cycle

• Activities have
several states

• Lifecycle methods are
called on transitions

• You typically don’t
need to use them all,
but they are there

Life Cycle example (Child Activity)

• Call sequence:
– onCreate()
– onStart()
– onResume()
– onFreeze()
– onPause()
– onStop()
– onRestart()
– onStart(), onResume(), ...

Android Application Building Blocks

• Activities: Building block of the UI. Every screen in your application will be
an extension of the Activity class. You can think of an activity as being
analogous to a window or dialog in a desktop environment.

• Services: Headless (non-UI) application that runs in the background. They
are designed to keep running independent of any activity.

• Content Providers: Provide a level of abstraction for any data stored on
the device that is accessible by multiple applications.

• Intents: A simple message passing framework. Using intents you can
broadcast messages system-wide or to a target Activity or Service.

• Broadcast Receivers: Intent broadcast consumers. By registering a
broadcast receiver your application an listen for broadcast Intents that
match specific filter criteria.

• Notifications: User notification framework. Let you signal users without
interrupting their current activity. For instance an incoming call can alert you
with flashing lights, making sounds, or showing a dialog.

Hello World!!

1. Create a new Android Project
– Select File > New >

Android Project

2. Fill out the project details
– Enter HelloWorld for Project

Name
– Select “Create new project

in workspace”
– Enter HelloWorld in App

name.
– Enter

com.chicagoandroids.Hello
World in Package Name

– Enter HelloWorld in Activity
name (and yes we want to
create an Activity)

Project Properties

This is the human-readable title for your application. Application Name

This is the name for the class stub that will be generated by
the plug-in. This will be a subclass of Android's Activity
class. An Activity is simply a class that can run and do work.
It can create a UI if it chooses, but it doesn't need to.

Activity Name

This is the package namespace (following the same rules as
for packages in the Java programming language) that you
want all your source code to reside under. This also sets the
package name under which the stub Activity will be
generated. The package name you use in your application
must be unique across all packages installed on the system;
for this reason, it's very important to use a standard domain-
style package for your applications. In the example above,
we used the package domain "com.chicagoandroids".

Package Name

This is the name of the directory or folder on your computer
that you want to contain the project.

Project Name

The Activity/App. Layout

The Automatic* Portions…

• Left: Manifest (* not that automatic)
• Right: R class and the android library (no need to touch)

The Automatic* Portions…

• Left: Source directories, where your classes go…
• Right: Resources (this is what gets automatically build

into the R class)

A word about the emulator

• You can create different
Run configurations for
different target devices.

• It is possible to target
different resolutions
(HVGA, HVGA-P, HVGA-
L, etc)

• Network speed and
latency, etc.

• Use the AVD manager
and the ‘Run->Run
configurations’ to
manipulate

Run hello world

• Select the root of the
project.

• Click in the ‘green
play icon’.

• Pick Android Project

• That will get the
emulator going…

Activity Layouts

• Where do they live?

• Why? Dynamic instantiation is possible,
but it is discourage (compile vs dynamic).

• What are they? An XML-based layout is a
specification of widget’s relationships to
each other encoded in XML.

Layout’s most basic example…

<?xml version="1.0" encoding="utf-8"?>

<Button xmlns:android="http://schemas.android.com/apk/res/android"

 android:id="@+id/button"

 android:text=""

 android:layout_width="fill_parent"

 android:layout_height="fill_parent"/>

In this example Button is the root element…but a container would be
more typical.

Containers pour a collection of widegets (and maybe child containers)
into a specific layout. More on that in the future

Intents (The Basics)

So, what can you Intent to do?

Intents are system messages that notify
applications of various events:
– Activity events (launch app, press button)
– Hardware state changes (acceleration change, screen

off, etc)
– Incoming data (Receiving call, SMS arrived)

You can also create your own to launch
applications, etc.
– Inter-activity communications (open an app when you

get to a location, etc)

Intent most basic example…
public class NowRedux extends Activity
implements View.OnClickListener {
Button btn;

@Override
public void onCreate(Bundle icicle) {

super.onCreate(icicle);

setContentView(R.layout.main);

btn=(Button)findViewById(R.id.button);
btn.setOnClickListener(this);
updateTime();

}

public void onClick(View view) {
 updateTime();
 //Uri uri = Uri.parse("http://developer.android.com");
 //startActivity(new Intent(Intent.ACTION_VIEW, uri));
}

private void updateTime() {
btn.setText(new Date().toString());

}
}

The Application’s Manifest

The manifest

• Declares the permissions the application will
need (uses-permission)

• Declare permissions that activities or services
might require to use your app (permission)

• Provides instrumentations elements
(instrumentation)

• Defines the guts of the application
• Provides hooks to connect to optional Android

components such as mapping (uses-library)

Default AndroidManifest.xml
• One application node. Application properties include icon and application label in

home screen.
• One Activity node. Activity name is abbreviated to .Sample. Tells Android which Java

class to load. The activity label is the title for that activity in the titlebar.
• Intent-filter tags specify which Intents launch the Activity. In order for an application

to be available from the launcher it must include an Intent Filter listening for the MAIN
action and the LAUNCHER category.

<manifest xmlns:android-http://schemas.android.com/apk/res/android
package=“com.motorola.Sample”>

 <application android:icon="@drawable/icon“
android:label="@string/app_name">

 <activity android:name=".Sample"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>
</manifest>

Android Manifest (cont)
<manifest xmlns:android-http://schemas.android.com/apk/res/android

package=“com.mydomain.myapp”>

<application android:icon=“@drawable/icon”
android:theme=“@style/my_theme”>

<activity android:name=“.MyActiv” android:label=“@string/app_name”>
<intent-filter> . . . </intent-filter>

</activity>

<service android:enables=“true” android:name=“MyService”>
<intent-filter> . . . </intent-filter>

</service>

<provider android:permission=“com.paad.MY_PERMISSION” . . .>
</provider>

<receiver android:enabled=“true”
android:label=“My Broadcast Receiver”
android:name=“.MyBroadcastReceiver”>

</receiver>
</application>

</manifest>

Android Manifest (cont)
<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.bikerolas"
 android:versionCode="30"
 android:versionName="1.2">
 <uses-permission android:name="android.permission.RECEIVE_BOOT_COMPLETED" />
 <uses-permission android:name="android.permission.ACCESS_LOCATION />
 <uses-permission android:name="android.permission.ACCESS_GPS" />
 <uses-permission android:name="android.permission. ACCESS_CELL_ID />

 <application android:icon="@drawable/flingicn1" android:label="@string/app_name" android:debuggable="false">
 <activity android:name=".Fling"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
<service android:name=".FlingService" />
<receiver android:name=".FlingServiceManager"

android:permission="android.permission.RECEIVE_BOOT_COMPLETED">
<intent-filter>
 <action android:name="android.intent.action.BOOT_COMPLETED" />
</intent-filter>
</receiver>
</application>

<uses-sdk android:minSdkVersion="2"></uses-sdk>
</manifest>

Q&A

Citation I

• This presentation contains references
from the following sources:
– Android Developer’s site

http://developer.android.com/sdk/1.5_r2/index.html

http://developer.android.com/sdk/1.5_r2/installing.html

– Professional Android Application
Development (by Reto Meier)

http://developer.android.com/sdk/1.5_r2/index.html
http://developer.android.com/sdk/1.5_r2/installing.html

Citation II

• This presentation contains references from the
following sources:
– The Busy Coder’s Guide to Android Development (by

Mark L. Murphy)
– Inside the Android Application Framework (by Dan

Morrill)
http://sites.google.com/site/io/inside-the-android-application-framework

– Dalvik VM Internal (by Dan Bornstein)
http://sites.google.com/site/io/dalvik-vm-internals

http://sites.google.com/site/io/inside-the-android-application-framework
http://sites.google.com/site/io/dalvik-vm-internals

	Intro to Android
	Who am I?
	In this presentation
	Resources
	Important Developer Resources:
	Additional Website
	The SDK
	Supported Operating Systems
	Pre install Requirements
	Install SDK
	Setup development env.
	Test your setup
	Install Eclipse
	Eclipse 3.4 (Ganymede) setup
	Eclipse 3.4 setup
	Introduction to the Android Environment
	Start Eclipse. Click File->New->android project Click Create project from existing Location : <SDK>platforms/android-1.5/samples/NotePad Click Android 1.5 If its not selected Click Finish Project is created
	Starting the emulator
	Emulator Starts
	Running your application
	Introduction to the Android OS
	Quick shell demo
	What Android is not
	Openness of Android
	Android Applications
	Android SDK Features
	Android NDK Features (release June ‘09)
	Platform Features
	Android Layer Cake
	The Android Activity
	Activities and Tasks
	Activities (continue)
	Slide 33
	Activities vs Tasks (Apps)
	Process Basics
	Android Activity Life Cycle
	Life Cycle example (Child Activity)
	Android Application Building Blocks
	Hello World!!
	Project Properties
	The Activity/App. Layout
	The Automatic* Portions…
	Slide 43
	A word about the emulator
	Run hello world
	Activity Layouts
	Layout’s most basic example…
	Intents (The Basics)
	So, what can you Intent to do?
	Intent most basic example…
	The Application’s Manifest
	The manifest
	Default AndroidManifest.xml
	Android Manifest (cont)
	Slide 55
	Q&A
	Citation I
	Citation II

